Secure apps

Aims

Crypto Basic

HTTPS

Secure Email

Secure Client Applications

Networking

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 26 June 2014 Common/Reports/secure-client-apps.tex, r900

Secure apps

Aims

Crypto Basics HTTPS

Secure Email

Acronyms and Abbreviations

CA Certificate Authority (same as TA)

HTTP HyperText Transfer Protocol

- HTTPS HTTP over SSL
- PGP Pretty Good Privacy
- PR Private key
- PU Public key

TLS

- SSL Secure Sockets Layer (same as TLS)
- TA Trusted Authority (same as CA)
- TCP Transmission Control Protocol
 - Transport Layer Security (same as SSL)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Secure apps

Aims

Crypto Basics HTTPS Secure Email

Contents

Aims

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Secure apps

Aims

Crypto Basic

HTTPS

Secure Email

Workshop Aims

 Understand security limitations of common Internet applications

- Increase awareness of "extensions" of Internet applications that increase security
- Learn about techniques for enhancing your communication secrecy and privacy

Secure apps

Aims

Crypto Basics

Secure Email

Applications and Extensions

Web Browsing

- Secrecy: HTTPS and certificates, HTTPS Everywhere
- Privacy: AdBlock Plus, Ghostery, FoxyProxy, Hola ...
- Safety: NoScript, ...

Email

 Signatures and Secrecy: OpenPGP, Enigmail, Thunderbird

File Encryption

- ► File:
- Disk: TrueCrypt, BitLocker

Secure apps

Aims

Crypto Basics HTTPS Secure Email

Contents

Aims

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Secure apps

Aims

Crypto Basics

Secure Email

Cryptography

Symmetric Key Cryptography

- Source: Encrypt message with secret key K
- Destination: must also know K; decrypts data with K
- Pro: Fast for large amounts of data
- ► Con: Requires K to be securely exchanged in advance

Public Key Cryptography

- Each node has a (public, private) key pair, (PU_a, PR_a)
- Encrypt a message with one key in pair, can only be decrypted with other key in key pair
- Pro: Does not require exchange of secrets
- Con: Slow for large amounts of data

Secure apps

Aims

Crypto Basics HTTPS

Public Key Cryptography

Public Key Cryptography for Confidentiality

- Source: Encrypt message with public key, PU_{dst} of destination
- Destination: decrypts data with PR_{dst}
- Only destination can decrypt it

Public Key Cryptography for Signatures

Source: Encrypt message with own private key, PR_{src}

- Destination: decrypts data with PU_{src}
- Only source could have sent it

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Contents

Aims

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

HTTP and HTTPS

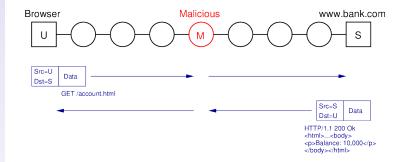
HTTP

- Send request to web server; returns the web page
- Malicious use can intercept/modify data

HTTPS

- Establish secure SSL/TLS connection between browser and server; then use HTTP
- Data is encrypted; interception/modification not possible
- ▶ But . . .

Secure apps


Aims

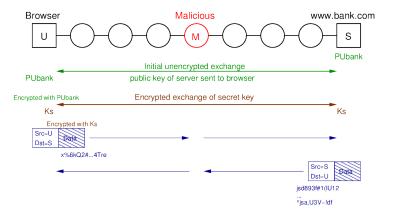
Crypto Basics

HTTPS

Secure Email

HTTP: Interception is Easy

Secure apps


Aims

Crypto Basics

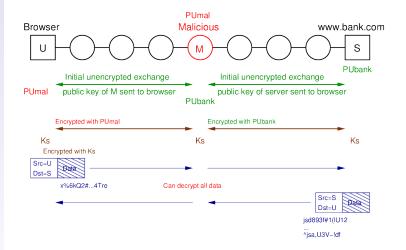
HTTPS

Secure Email

HTTPS: Data is Encrypted

- Public key cryptography used to exchange a secret key
- Data encrypted with secret key

Secure apps


Aims

Crypto Basics

HTTPS

Secure Email

HTTPS: Man-in-the-Middle Attack

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

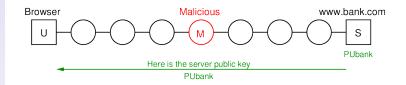
HTTPS Encryption

- To encrypt data, browser and server must exchange a secret key
- But cannot send secret key, unencrypted, across Internet
 - Use public-key cryptography for secret key exchange
- Server has (public, private) keypair
 - Encrypt with one, can only decrypt with the other in pair

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

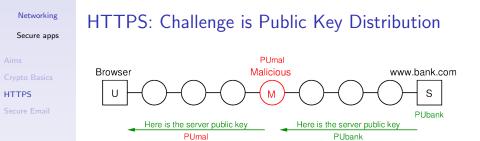
 Server sends its public key to browser, then used to encrypt secret key

Secure apps


Aims

Crypto Basic

HTTPS


Secure Email

HTTPS: Challenge is Public Key Distribution

How does browser know received public key is that of the server?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How does browser know received public key is that of the server?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Networking HTTPS: Trusted Authority Signs Key Secure apps **Trusted Authority** TΑ HTTPS **PI**Ita Browser Malicious www.bank.com U S PLIta SignedBvTA(PUbank) Here is the signed server public key SignedByTA(PUbank)

Verify signed public key using PUta: Success

- Trusted Authority: Another entity trusted by the browser and server
- Trusted Authority "signs" public key of server
- Browser "verifies" received public key using TA's public key

Networking Secure apps HTTPS: Trusted Authority Signs Key

- If malicious node modifies signed public key of server, the verification at browser will detect it
- A public key signed by someone else is called a digital certificate

HTTPS

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Digital Certificates in Practice

How does a server obtain a certificate?

- Prove identity to CA by:
 - Domain validation
 - Extended validation
- Free and commercial services

How does browser obtain CA certificate?

- Pre-loaded into browsers
- Hierarchy of certificates is supported

What if CA certificate is not in browser?

Browsers commonly present warning to user

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Security Issues with Digital Certificates

- Identity verification of server (owners)
- Security of CA private key
- Pre-loaded certificates by browser publisher
- Response when invalid certificate received
- Algorithms used in certificates should be strong

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Secure apps

Aims

Crypto Basic HTTPS

Secure Email

Contents

Aims

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Secure apps

- Aims
- Crypto Basics
- HTTPS
- Secure Email

Secure Email

- Email messages originally only text with pre-defined headers (To, From Subject, CC, ...)
- Multipurpose Internet Mail Extensions (MIME) allows for different message and header formats: different character sets, attachments, new headers
- Secure email requirements:
 - 1. Authentication: receiver can confirm the actual sender, and that content is not modified
 - 2. Confidentiality: only sender/receiver can read the contents
- ▶ Two common ways to implement secure email:
 - 1. S/MIME
 - 2. OpenPGP
- Both use similar approach: sender signs message with private key, encrypts message with symmetric key encryption using a secret key, and encrypts the secret key using recipients public key

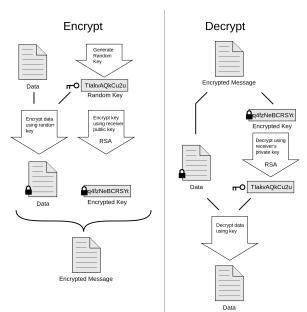
Secure apps

- Aims
- Crypto Basics
- HTTPS
- Secure Email

OpenPGP

- Pretty Good Privacy (PGP) developed by Phil Zimmerman in 1991
- IETF standardised as OpenPGP
- One of first and most widely used applications of public-key cryptography
- Implementations:
 - Original by Zimmerman: Symantec
 - GNU Privacy Guard (GPG)
 - Many email clients (either direct or through plugins, e.g. Enigmail, GPG4Win)
- OpenPGP vs S/MIME:
 - OpenPGP: public keys distributed informally: phone, websites, email
 - S/MIME: public keys distrubuted as X.509 digital certificates

Networking Secure apps


PGP Operation: Concept

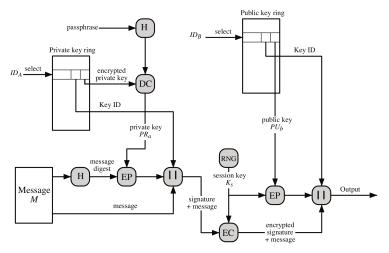
Aims

Crypto Basic

HTTPS

Secure Email

Credit:xaedes & jfreax & Acdx, Wikimedia Commons, CC Attribution-Share Alike 3.0 -


Aims

Crypto Basics

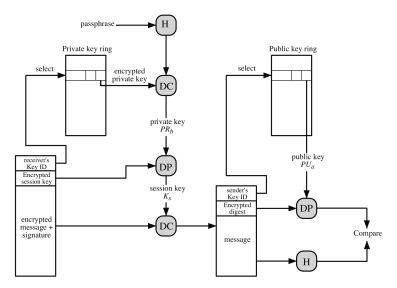
HTTPS

Secure Email

PGP Operation: Message Generation at A

Credit: Figure 18.5 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Secure apps


Aims

Crypto Basics

HTTPS

Secure Email

PGP Operation: Message Reception at B

Credit: Figure 18.6 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011