Security - RC4 Example

1 Introduction

Lets consider the stream cipher RC4, but instead of the full 256 bytes, we will use $8 \times$ 3 -bits. That is, the state vector \mathbf{S} is 8×3-bits. We will operate on 3 -bits of plaintext at a time since \mathbf{S} can take the values 0 to 7 , which can be represented as 3 bits.

Thanks to Thapanee, NazimCSD, Fabian and others for identifying errors in past versions of this example.

2 Example 1

Assume we use a 4×3-bit key, \mathbf{K}, and plaintext \mathbf{P} as below:

```
K = [llllll
P = [lllll
```

The first step is to generate the stream.
Initialise the state vector \mathbf{S} and temporary vector \mathbf{T}. \mathbf{S} is initialised so the $\mathbf{S}[i]=i$, and T is initialised so it is the key \mathbf{K} (repeated as necessary).

```
S = [llllllllll
T =[[llllllllll
```

Now perform the initial permutation on \mathbf{S}.

```
j = 0;
```

for $i=0$ to 7 do
$j=(j+S[i]+T[i]) \bmod 8$
Swap(S[i],S[j]);
end
We will step through for each iteration of i :

```
For i = 0:
j = (0 + 0 + 1) mod 8
    = 1
Swap(S[0],S[1]);
```

So in the 1st iteration $\mathbf{S}[0]$ must be swapped with $\mathbf{S}[1]$ giving:

```
S = [1 0 2 3 3 4 5 6 7
```

The results of the remaining 7 iterations are:

```
For i = 1:
j = 3
Swap(S[1],S[3])
S = [1 1 3 2 0 4 5 6 7];
For i = 2:
j = 0
Swap(S[2],S[0]);
S = [2 3 1 0 4 5 6 7];
For i = 3:
j = 6;
```

```
Swap(S[3],S[6])
S = [2 3 1 1 6 4 5 0 7];
For i = 4:
j = 3
Swap(S [4],S [3])
S = [2 [ 3 1 4 4 6 5 0 7];
For i = 5:
j = 2
Swap(S[5],S[2]);
S = [2 3 5 4 6 1 0 7];
For i = 6:
j = 5;
Swap(S[6],S[5])
S = [llllllllll
For i = 7:
j = 2;
Swap(S[7],S[2])
S = [llllllllll
```

Hence, our initial permutation of \mathbf{S} gives:
$S=\left[\begin{array}{llllllll}2 & 3 & 7 & 4 & 6 & 0 & 1 & 5\end{array}\right]$;
Now we generate 3 -bits at a time, k, that we XOR with each 3 -bits of plaintext to produce the ciphertext. The 3 -bits k is generated by:

```
i, j = 0;
while (true) {
    i = (i + 1) mod 8;
    j = (j + S[i]) mod 8;
    Swap (S[i], S[j]);
    t = (S[i] + S[j]) mod 8;
    k = S[t];
}
```

The first iteration:

```
S = [llllllllll
i = (0 + 1) mod 8 = 1
j = (0 + S[1]) mod 8 = 3
Swap(S[1],S[3])
S = [2 4 4 7 3 6 0 1 5]
t = (S[1] + S[3]) mod 8 = 7
k = S[7] = 5
```

Remember, that \mathbf{P} is:
$P=\left[\begin{array}{llll}1 & 2 & 2 & 2\end{array}\right]$
So our first 3-bits of ciphertext is obtained by: k XOR P_{1}
5 XOR $1=101$ XOR $001=100=4$
The second iteration:

```
S = [2 [4 7 3 6 0 1 5]
i = (1 + 1 ) mod 8 = 2
j = (3 + S[2]) mod 8 = 2
```

```
Swap(S[2],S[2])
S = [2 4 7 7 3 6 0 1 5]
t = (S[2] + S[2]) mod 8 = 6
k = S[6] = 1
```

Second 3-bits of ciphertext are:
1 XOR $2=001$ XOR $010=011=3$
The third iteration:

```
S = [2 [ 4 7 7 3 6 0 1 5]
i = (2 + 1) mod 8 = 3
j = (2 + S[3]) mod 8 = 5
Swap(S[3],S[5])
S = [2 4 4 7 0 6 3 1 5]
t = (S[3] + S[5]) mod 8 = 3
k = S[3] = 0
```

Third 3-bits of ciphertext are:
$0 \operatorname{XOR} 2=000 \mathrm{XOR} 010=010=2$
The final iteration:

```
S = [2 [ 4 7 0 0 6 3 1 5]
i = (1 + 3 ) mod 8 = 4
j = (5 + S[4]) mod 8 = 3
Swap(S [4],S [3])
S = [2 [4 7 7 6 0 3 1 5]
t = (S[4] + S[3]) mod 8 = 6
k = S[6] = 1
```

Last 3-bits of ciphertext are:
$1 \mathrm{XOR} 2=001 \mathrm{XOR} 010=011=3$
So to encrypt the plaintext stream \mathbf{P} with key \mathbf{K} with our simplified RC 4 stream we get \mathbf{C} :

```
P = [lllll
K=[[\begin{array}{lllll}{5}&{1}&{0}&{1}\end{array}]
C=[[\begin{array}{lllll}{4}&{3}&{2}&{3}\end{array}]
```

Or in binary:
$\mathrm{P}=001010010010$
$K=101001000001$
$\mathrm{C}=100011010011$

