
File: /home/sgordon/svn/Steve/Web/I… Assignment 2/Group Member.txt Page 1 of 1

1. Pornprapa Chuwongwit 5122770241
2. Krittameth Teachasrisaksakul 5122780570
3. Araya Kinbuangam 5122791171

Test Description

Host Computer Specification

 Hardware
Minimum requirements for Ubuntu Desktop (GUI) Installation

 1 GHz x86 processor
 512MB RAM
 5GB of disk space
 Graphics card and monitor capable of 1024x768

 Software
Ubuntu Desktop is installed to the computer with the aforementioned minimum requirements.

Test Software

1. Iperf
Iperf is a prevalent open-source network performance measurement software that can

create TCP and UDP data streams, and measure the throughput of a network. Iperf functionalities
include a parameter setting for testing a network; a client and server functionality; and
measurement of the throughput between the two ends. It runs on various platforms including Linux,
Unix and Windows. Install iperf on all host computers used in the test by running the following
command line:

$ sudo apt-get install iperf

2. Iptables
Iptables is a built-in firewall on Ubuntu. It allows a user to configure the firewall rules to

perform some actions on the input/output/forward chain.
3. tc

Tc is a tool for configuring Traffic Control in the Linux kernel. It possesses the following
functionality: shaping transmission rate and burst, scheduling (i.e. reordering of packets), policing,
dropping etc. Processing of traffic is controlled by three kinds of objects: qdiscs, classes, and filters.

Network Technologies

There are four scenarios to be considered and tested:
1. Single TCP session; varying application/protocol parameters
2. Single TCP session; varying network/link conditions
3. Multiple TCP sessions
4. Single/Multiple TCP sessions in presence of UDP sessions

All scenarios except the second one require the same steps for preparation.

Preparation Steps for Scenario 1, 3, and 4

1. Connect two host computers, with the specifications as stated in “Host Computer
Specification” section, through a cross-over cable according to the Figure 1.1

Host A ------------------ Host B
Server Client

IP address: a.b.c.j IP address: a.b.c.k

Figure 1.1: Network Topology for Preparation for Scenario 1, 3, and 4

2. According to the Figure 1.1, assume an interface ethX of the server computer A is connected
to an interface ethY of the client computer B through a cross-over cable. Configure the IP
address of each computer’s interface by the following steps:

a. To set the IP address a.b.c.j to the interface ethX on the computer A, run the
following command line:

$ sudo ifconfig ethX a.b.c.j netmask 255.255.255.0 up

b. To set the IP address a.b.c.k to the interface ethY on the computer B, run the
following command line:

$ sudo ifconfig ethY a.b.c.k netmask 255.255.255.0 up

3. To test whether the subnet configuration in the previous steps works, perform the following
steps:

a. On the computer A, run the following command line:

$ ping a.b.c.k

If the subnet configuration works, the Terminal will periodically display the similar
responses to the Figure 1.2

Figure 1.2: Ping Response for Correct Subnet Configuration

b. On the computer B, perform the same actions as in step 3-a. but run the following
command line.

$ ping a.b.c.j

Figure 1.1: Network Topology for Preparation for Scenario 1, 3, and 4

2. According to the Figure 1.1, assume an interface ethX of the server computer A is connected
to an interface ethY of the client computer B through a cross-over cable. Configure the IP
address of each computer’s interface by the following steps:

a. To set the IP address a.b.c.j to the interface ethX on the computer A, run the
following command line:

$ sudo ifconfig ethX a.b.c.j netmask 255.255.255.0 up

b. To set the IP address a.b.c.k to the interface ethY on the computer B, run the
following command line:

$ sudo ifconfig ethY a.b.c.k netmask 255.255.255.0 up

3. To test whether the subnet configuration in the previous steps works, perform the following
steps:

a. On the computer A, run the following command line:

$ ping a.b.c.k

If the subnet configuration works, the Terminal will periodically display the similar
responses to the Figure 1.2

Figure 1.2: Ping Response for Correct Subnet Configuration

b. On the computer B, perform the same actions as in step 3-a. but run the following
command line.

$ ping a.b.c.j

Figure 1.1: Network Topology for Preparation for Scenario 1, 3, and 4

2. According to the Figure 1.1, assume an interface ethX of the server computer A is connected
to an interface ethY of the client computer B through a cross-over cable. Configure the IP
address of each computer’s interface by the following steps:

a. To set the IP address a.b.c.j to the interface ethX on the computer A, run the
following command line:

$ sudo ifconfig ethX a.b.c.j netmask 255.255.255.0 up

b. To set the IP address a.b.c.k to the interface ethY on the computer B, run the
following command line:

$ sudo ifconfig ethY a.b.c.k netmask 255.255.255.0 up

3. To test whether the subnet configuration in the previous steps works, perform the following
steps:

a. On the computer A, run the following command line:

$ ping a.b.c.k

If the subnet configuration works, the Terminal will periodically display the similar
responses to the Figure 1.2

Figure 1.2: Ping Response for Correct Subnet Configuration

b. On the computer B, perform the same actions as in step 3-a. but run the following
command line.

$ ping a.b.c.j

Test Methodology

Number of Tests
For all scenarios, at least three times of test (step 2 to step 6) must be performed for each

different values of each parameter. The additional tests can be performed depending on the
difference of the results. If the results differ significantly, three additional tests should be performed.
For example, if the values of throughput from repeating the test for three times are 16.7, 17.2, and
17.8, no additional test is required. However, if the values are 17, 20, and 23, the additional tests
should be performed.

Test Duration
For scenario 1 and scenario 2, the duration of test should be at least 30 seconds; and, for

scenario 3 and scenario 4, the duration of test should be at least 60 seconds. The test duration can
be specified in iperf command by using –t option.

Scenario 1: Single TCP session; varying application/protocol parameters
There are four parameters in which the changes may affect TCP’s throughput performance:

 TCP receive buffer/window size
 Length of data written/read by application

Each parameter requires the same steps for its test but each of them is different in the options used
with iperf command. The following are the steps for test in this scenario.

** For step 2 to step 7, each single test’s bandwidth (throughput) values must be recorded.
** For step 3 to step 7, each step must be performed with several different values of parameters as
specified in the “Parameters Values” section.

Steps for test of impacts from varying “TCP receive window size of server computer” on throughput

1. Open the Terminal application of Ubuntu by clicking at the “Applications” button at the
upper left corner of desktop and following this path: Accessories > Terminal

2. To check the throughput of the TCP connection with default values of parameters, perform
the following actions:

a. On the server computer A, run the following command in order to activate the
server to listen to a connection request:

$ iperf -s -t 30

b. On the client computer B, run the following command in order to establish a TCP
connection to the server computer A with –t option to specify the time to transmit
to be 30 seconds (a.b.c.j is an IP address of the server computer A.)

$ iperf -c a.b.c.j -t 30

*For the test to work, perform step 2-a. immediately before 2-b. since the server needs to
be started before the client can connect to it.

3. Record the throughput value shown in the Terminal under the word “Bandwidth”

4. To check the throughput of the TCP connection with other values of TCP receive window
size at the server computer, perform the same actions as the step 2-a. and 2-b. but use
these commands instead of command in the step 2-a. and 2-b. respectively.

$ iperf -s -w 40K -t 30

$ iperf -c a.b.c.j -t 30

According to the above command, -w option is used to specify TCP receive window size to
be 8000 bytes at the server computer A since, on Linux systems, when specifying a TCP
buffer size with the -w option, the kernel allocates double as much as indicated.

5. Record the throughput value shown in the Terminal under the word “Bandwidth.

6. Repeat steps 4 and step 5 with different values of window size at the server computer A by
changing the value specified after the option -w to be other values as specified in the
“Parameters Values” section.

Steps for test of impacts from varying “BDP and TCP receive window size” on throughput

** The steps of this test are same as the previous test except that the following steps must be
performed before step 1 of the previous test.

A. Set round-trip time to be 160 ms by using the following command to set the delay to be 80
milliseconds (in order to fix the BDP at 2000 KB, or any value that is lower than the default
BDP).

$ sudo tc qdisc add dev eth0 root netem delay 80ms 0ms

Steps for test of impacts from varying “length of data written/read by application at server
computer” on throughput

** The steps of this test are same as the previous test except step 4.
4. To check the throughput of the TCP connection with other values of length of data
written/read by application at server computer A, perform the same actions as the step 2-a.
and 2-b. but use these commands instead of command in the step 2-a. and 2-b. respectively.

$ iperf -s -l 8K -t 30

$ iperf -c a.b.c.j -t 30

According to the above command, -l option is used to specify length of data written/read by
application to be 8000 bytes at the server computer A.

Steps for test of impacts from varying “length of data written/read by application at client
computer” on throughput

** The steps of this test are same as the previous test except step 4.
4. To check the throughput of the TCP connection with other values of length of data
written/read by application at client computer B, perform the same actions as the step 2-a. and
2-b. but use these commands instead of command in the step 2-a. and 2-b. respectively.

$ iperf -s -l 8K -t 30

$ iperf -c a.b.c.j -l 8K -t 30

According to the above command, -l option is used to specify length of data written/read by
application to be 8000 bytes at the client computer B.

Scenario 2: Single TCP session; varying network/link conditions
There are three conditions of link that may affect the throughput:

 Link data rate
 Link delay
 Packet drop rate

Steps for test of impacts from varying “Link data rate” on throughput
1. Link data rate can be specified at the client computer B by using tc command to. The latency

is the maximum time interval allowed for a packet to wait, and the burst allows a set of bits
to be sent above the specified rate. To add a 'token bucket filter' that limits the sending rate
to 500kbps, run the following command:

$ sudo tc qdisc add dev eth0 root tbf rate 500kbit latency 50ms burst 5kb

2. To check the throughput of the TCP connection with the specified link delay, perform the
following actions:

a. On the server computer A, run the following command in order to activate the
server to listen to a connection request:

$ iperf -s -t 30

b. On the client computer B, run the following command in order to establish a TCP
connection to the server computer A with –t option to specify the time to transmit
to be 30 seconds (a.b.c.j is an IP address of the server computer A.)

$ iperf -c a.b.c.j -t 30

3. Before changing the link data rates to other values, delete the rule added in step 1 by
running the same command as in step 1 but change the word “add” to “del”.

4. Repeat step 1 to step 4 with different values of link data rate specified after the word “tbf
rate”.

Steps for test of impacts from varying “Link delay” on throughput
1. Link delay can be implemented at the client computer B by using tc command to. To add a

random delay of between 90 and 110ms (average 100ms) to every packet that the client
computer B sends, run the following command:

$ sudo tc qdisc add dev eth0 root netem delay 100ms 10ms

2. To check the throughput of the TCP connection with the specified link delay, perform the set
of actions as in step 2 of Steps for test of impacts from varying “Link data rate” on
throughput section.

3. Before changing the packet delay to other values, delete the rule added in step 1 by running
the same command as in step 1 but change the word “add” to “del”.

4. Repeat step 1 to step 4 with different values of packet drop rates specified after the word
“delay”.

Steps for test of impacts from varying “Packet drop rate” on throughput
1. Dropping packets can be implemented at the server computer A by using iptables command

to set up firewall rules in order to drop the input chain’s packets, i.e. packets originated from
other host computer and have address of computer A as their destination address. To set up
the mentioned firewall rule at the server computer A, run the following command:

$ sudo iptables -A INPUT -m statistic --mode random --probability 0.03 -j DROP

This command adds a firewall rule with an action of dropping the packets from input chain
with the probability 0.03

2. To check whether the rule is correctly added to the set of firewall rules, run the following
command to list all current firewall rules:

$ sudo iptables -L

3. To check the throughput of the TCP connection with the specified packet drop rate, perform
the set of actions as in step 2 of Steps for test of impacts from varying “Link data rate” on
throughput section.

4. Before changing the packet drop rate to other values, delete the rule added in step 1 by
running the same command as in step 1 but change –A option to –D option.

5. Repeat step 1 to step 4 with different values of packet drop rates specified after --probability
option.

Scenario 3: Multiple TCP sessions
There are three conditions examined to observe an impact on TCP’s throughput performance:

 Two TCP sessions
 Three TCP sessions
 Four TCP sessions

Each condition requires the same steps for its test but each of them is different in the values for –P
option, of iperf command, which is used to specify the number of parallel connections. The following
are the steps for test in this scenario.

1. Open the “Terminal” application of Ubuntu
2. To check the throughput of two multiple TCP sessions, perform the following actions:

a. On the server computer A, run the following command in order to activate the
server to listen to a connection request:

$ iperf -s -t 60

b. On the client computer B, run the following command in order to establish two TCP
connections to the server computer A with –t option to specify the time to transmit
to be 60 seconds (a.b.c.j is an IP address of the server computer A.)

$ iperf -c a.b.c.j -t 60 -P 2

3. To check the throughput of three multiple TCP sessions, perform the same steps as step 2
but change the command at the client computer B to be:

$ iperf -c a.b.c.j -t 60 -P 3

4. To check the throughput of four multiple TCP sessions, perform the same steps as step 2 but
change the command at the client computer B to be:

$ iperf -c a.b.c.j -t 60 -P 4

Scenario 4: Single/Multiple TCP sessions in presence of UDP sessions
There are four conditions examined to observe an impact on TCP’s throughput performance:

 One TCP session (in presence of one UDP session)
 One TCP session (in presence of two UDP sessions)
 Two TCP sessions (in presence of one UDP session)
 Two TCP sessions (in presence of two UDP sessions)

Each condition requires the same steps for its test but each of them is different in the values for –P
option, of iperf command, which is used to specify the number of parallel connections. The following
are the steps for test in this scenario.

1. Open two windows of “Terminal” application
2. To check the throughput of one TCP session in presence of one UDP session, perform the

following actions:
a. On the first window of server computer A, run the following command in order to

activate the server to listen to a UDP connection request:

$ iperf –s -u -t 60

b. On the first window of client computer B, run the following command in order to
establish a UDP connection to the server computer A with –t option to specify the
time to transmit to be 60 seconds (a.b.c.j is an IP address of the server computer A.)

$ iperf –c a.b.c.j -u -t 60

c. Immediately after the step 2-a. and 2-b., on the second window of server computer
A, run the following command in order to activate the server to listen to a TCP
connection request:

$ iperf –s -t 60

d. On the second window of client computer B, run the following command in order to
establish a TCP connection to the server computer A with –t option to specify the
time to transmit to be 60 seconds (a.b.c.j is an IP address of the server computer A.)

$ iperf –c a.b.c.j -t 60

3. To check the throughput of one TCP session in presence of two UDP sessions, perform the
same actions as step 2 but change the command in the step 2-a. to the following command,
in order to start two UDP sessions:

$ iperf –s -u -t 60 -P 2

4. To check the throughput of two TCP sessions in presence of one UDP session, perform the
same actions as step 2 but change the command in the step 2-c. to the following command,
in order to start two TCP sessions:

$ iperf –s -t 60 -P 2

5. To check the throughput of two TCP sessions in presence of two UDP sessions, perform the
same actions as step 2 but change the command in the step 2-a. and the step 2-c. to the
following commands, in order to start UDP sessions before starting two TCP sessions:

$ iperf -s -u -t 60 -P 2

$ iperf –s -t 60 -P 2

Parameter Values

For each test in each scenario, only one parameter value must be changed at a time. For
instance, in test for impact of changing TCP buffer size on throughput in scenario1, only the TCP
buffer size is changed by using –w option. Subsequently, in test for impact of changing packet drop
rate on throughput in scenario 2, only the packet drop rate is changed by adding firewall rules by
using iptables.

Especially in scenario 2 where tc is used to change the link data rate and link delay rate, the
delete command should be executed to delete the prior value before the add command is run to
change the condition to new value. The similar actions should be applied to changing of packet drop
rate by using iptables in scenario 2 as well.

Scenario TCP window size Length of data
written/read by

application

Link Delay Packet Drop Rate Link Date Rate

Default 85.3 Kbytes(Server)
16.0 Kbytes(Client)

8 Kbytes 100 ms Zero drop rate 94.1 Mb/s

Scenario1 * * Default Default Default
Scenario2 Default Default ** ** **
Scenario3 Default Default Default Default Default
Scenario4 Default Default Default Default Default

Figure 2.1: Default Values of Parameters Categorized by Scenario

* = Recommended values for Scenario 1
TCP window size: 2, 4, 6, 8, 10, 12, 14, 16, 20, 40, 60, 85.3, 100 Kbytes
Length of data written/read by application: 4, 6, 8, 10, 12 Kbytes

** = Recommended values for Scenario 2
Link delay: 10, 50, 100, 120, 150, 200, 300, 400, 500, 600, 700 Kbytes
Packet drop rate: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.2
Link data rate: 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 10000 Kbit/s

The recommended values are for the computer that has the default values as in Figure 2.1.
These recommended values will cover almost every significant value of throughput. If the computer
used for the test does not have the default values as in the Figure 2.1, the experimenter can try to
find the appropriate values of parameters by first trying default value and subsequently trying the
higher or lower value with equal difference. For example, default window size (85.3 KB) is first used
then 60 KB and 100 KB are later set as window size. Afterwards, 40 KB and 120 KB are set as window
size. If all throughput values are not yet obtained, experimenter can try more specific value. For

instance, if 20 KB window size yields throughput of 93.93 Mb/s and 10 KB window size yields the
throughput of 61.82 Mb/s, the difference between throughput is too large so the experimenter can
try the window size of 13, 15, 17 KB to obtain more thorough values of throughput.

ClientServer

TCP TCP

APP APP

Results and Discussions

Scenario 1: Single TCP session; varying application/protocol parameters

Figure 1.1: TCP Buffer Structure of Server Computer and Client Computer

In the test, the impact of changing application/protocol parameters, i.e. receiver
buffer/window size and length of data written or read by the application, on throughput is
investigated. The tests are performed by changing only one parameter value at a time. TCP window
size is changed by specifying the value after –w option of iperf and length of data written or read by
the application is changed by specifying the value after –l option of iperf.

According to the Figure 1.1, the blocks between Transport Layer (TCP) and Application Layer
(APP) are the buffer of client computer and server computer. The option “-l” controls the length of
data written or read to each sub-block of buffer while the option “-w” controls the overall size of
buffer or the total size of five sub-blocks.

TCP Buffer/Window Size

Figure 1.2: Plots of Server’s TCP Window Size (Receive Window Size)

According to the Figure 1.2, the throughput value is increased while receive window size is
increased. The cause of this trend involves “Flow Control” and “Buffered Transfer” schemes used by
TCP. Flow control is for ensuring that the sender’s data does not overflow the receiver’s buffer by
informing the sender about the size of receiver’s free buffer space. Whereas, TCP transmits data by
using Buffered Transfer scheme: the data created by the application is stored in the buffer until the

0.00
20.00
40.00
60.00
80.00

100.00

2 3 4 10 13 15 17 20 40 60
85

.3
…

16
0
32
0

Server TCP Window Size (KB) vs.
Throughput (Mbit/s)

total size of the stored data reaches the buffer size. Once the limiting size is reached, the protocol
forces the transmission of the packet.

Therefore, TCP receive window size specifies the maximum amount of data that can be
transmitted continuously without waiting for the ACK. The larger the window size is the smaller
number of times of waiting for ACK and thus reduces delay in total transmission of whole data. As a
result of shorter waiting interval, more bytes can be transmitted and the throughput is increased.

Bandwidth Delay Product (BDP) and Receiver Window Size

Two of several factors which influence the throughput are Bandwidth Delay Product (BDP)
and receiver window size. BDP is a product of network bandwidth and network round-trip-time
(RTT). BDP indicates the network capacity or the amount of data that can be in transit between
client and server. If it is less than receiver window size, it will limit the TCP throughput since TCP
throughput cannot reach its maximum value. Conversely, if the BDP is large, the receiver window
size will limit TCP throughput due to TCP’s flow control scheme.

The default link data rate or network bandwidth of tested computers is 100 Mb/s and RTT is
100 millisecond. Default BDP of the tested computer is approximately 1250 kilobytes. (= 100 * 106 *
8 * 100 * 10-3 / 1000)

In the test, the BDP value is fixed to be 1000 kilobytes by changing the RTT to be 80
millisecond using tc command and iperf is run with increasing receiver window size in order to
investigate the impact of BDP which is lower than window size on throughput.

Figure 1.3: Plots of Server’s TCP Window Size
(Receive Window Size) with 1000 Kilobytes BDP

The Figure 1.2 is when the BDP is 1250 KB and the Figure 1.3 is when the BDP is 1000 KB.
According to the Figure 1.2 and Figure 1.3, at the receiver window size of 85 KB, the throughput of
default BDP is 94.1 Mb/s while the throughput of 1000 KB BDP is just 5.87 Mb/s. And all throughput
values of 1000 KB BDP are lower than those of default BDP since the 1000 KB BDP is less than
window size.

0.00
5.00

10.00
15.00
20.00
25.00
30.00

Receiver Window Size (KB) vs. Average
Throughput (Mbit/s) with BDP = 1000

Length of Data Written/Read by the Application

Figure 1.4: Plots of Server’s Length of Data
Written/ Read by Application and Throughput

Figure 1.5: Plots of Client’s Length of Data
Written/ Read by Application and Throughput

According to the Figure 1.4 and Figure 1.5, changes in the length of data read by the server’s
and written by client’s application have no effect on the value of throughput since they merely limit
the length of data written to/read from the buffer but do not alter neither the maximum amount of
data that can be received without acknowledgement nor the way that the data is segmented into
frame. The changes do not alter the way and the speed that the packets are transmitted between a
server computer and a client computer. Therefore, the changes do not impact the throughput value.

Scenario 2: Single TCP session; varying network/link conditions

Link Delay

According to the Figure 2.1, the greater link delay at the client computer, set by the tc
command to control the queue of packet transmission, yields the lower throughput of TCP
connection. The cause of this fact is derived from the lower number of bytes that can be transmitted
due to delay. In other word, comparing the situation which the delay rate is high to the situation
where there is no delay and the equal time interval is given for both situations, the latter can deliver
more bytes than the former since it does not waste any second on waiting for the expected packets
to arrive, i.e. delay. The formula for calculating throughput is number of transmitted bytes divided
by the total number of seconds using for transmitting those bytes. The lower the number of
transmitted bytes yields the lower throughput.

0.00
50.00

100.00

4 6 8
(Default)

10 12

Server's Length of Data (KB) vs.
Throughput (Mbit/s)

0.00

50.00

100.00

4 6 8
(Default)

10 12

Client's Length of Data (KB) vs.
Throughput (Mbit/s)

Figure 2.1: Plots of Link Delay and Throughput

Packet Drop Rate

According to the Figure 2.2, setting higher packet drop rate at the server computer, by
configuring the firewall rule to drop the input chain’s packets, makes the throughput of TCP
connection lower. This occurs owing to two reasons. Firstly, TCP is a reliable transport protocol. In
other words, the protocol guarantees delivery of packets by using retransmission scheme in case of
losing packets. Higher packet drop rate means higher number of lost packets which require TCP to
retransmit the packet and as a result waste more time than the situation where lower packet drop
rate is implemented. Secondly, TCP uses Congestion Control scheme which reduces the sending rate
by half upon detection of a loss event. The reduction of sending rate directly reduces the number of
bytes which can be transmitted and thus reduce the throughput.

Figure 2.2: Plots of Packet Drop Rate and Throughput Using TCP

Link Data Rate

According to the Figure 2.3, TCP throughput is directly proportional to link data rate. As the
link data rate is increased, the throughput is also increased. The reason is that link data rate directly
indicates the number of bits that can be delivered per second which directly affects the throughput.
Moreover, the Figure 2.3 shows that the trend is almost linearly increasing trend which corresponds
to the relatively constant ratio of the throughput and link data rate, approximately 0.95 or 95%.

0.00

20.00

40.00

60.00

80.00

100.00

10 50 100 120 150 200 250 300 400 500 700

Link Delay (ms) vs. Throughput (Mbit/s)

0.00

20.00

40.00

60.00

80.00

100.00

0.01 0.02 0.03 0.04 0.05 0.07 0.1 0.2

Probability of Packet Drop vs. Throughput
(Mbit/s)

Figure 2.3: Plots of Link Data Rate and Throughput

Scenario 3: Multiple TCP sessions

According to the Figure 3.1, the values of average throughput per TCP session are decreased
as the number of sessions is increased, and their values, 47.72, 31.42, and 18.83 Mb/s, are
approximately the half, one-third, and one-fourth of total average throughput, respectively. This
indicates TCP throughput performance is shared among multiple TCP sessions and each session gets
lower throughput when the number of TCP session is higher. However, the higher number of TCP
sessions does not have any impact on the total average throughput with one TCP session, i.e. 94.1
Mb/s.

Figure 3.1: Bar Graph of Number of TCP Sessions and
Average Throughput per Session and Average Throughput of Multiple TCP Sessions

Each TCP session gets a fair share of throughput. According to the Figure 3.2, the differences
between the maximum throughput per session and the average throughput; and between the
minimum throughput per session and the average throughput are about 1 and 5 Mb/s for two and
three TCP sessions, respectively. This occurs since TCP ensures fairness of performance share among
multiple TCP connection.

0.000
2.000
4.000
6.000
8.000

10.000

10
0
50
0

10
00
15
00
20
00
30
00
40
00
50
00
60
00
70
00
80
00
90
00

10
00
0

Link Data Rate (Kbit) vs.
Throughput (Mbit/s)

47.72

31.42
23.53

94.1 94.1 94.1

0

20

40

60

80

100

2 3 4

Average Throughput
per Session (Mbit/s)
Total Average
Throughput (Mbit/s)

Figure 3.2: Bar Graph of Number of TCP Sessions, Maximum Throughput
Per Session, and Minimum Throughput Per Session

Scenario 4: Single/Multiple TCP sessions in presence of UDP sessions

Single TCP Session in Presence of Single/Multiple UDP Sessions

According to the Figure 4.1, the value of throughput where default values of parameters are
applied and no UDP session is present is 94.1 Mb/s. TCP throughput is 93.2 Mb/s (reduced by 0.90
Mb/s) in presence of one UDP session and 92.1 Mb/s (reduced by 2.00 Mb/s) in presence of two
UDP sessions. These reductions in TCP throughput values by multiples of 1 Mb/s, which is close to
the value of each UDP session’s throughput (i.e. 1.05 Mb/s), indicate that, in presence of UDP
session, the throughput is shared between the TCP session and the UDP session.

Figure 4.1: Bar Graph of Average Throughput of One TCP Session
in Presence of Single/Multiple UDP Sessions

Multiple TCP Sessions in Presence of Single/Multiple UDP Sessions

According to the Figure 4.2, the throughput values of two TCP sessions in presence of one
UDP session (93.1 Mb/s) and two UCP sessions (92.1 Mb/s) are lower than that of only single TCP
session (94.1 Mb/s) since the throughput is shared among two TCP sessions and UDP sessions. These
differences are multiples of 1 Mb/s, the throughput of one UDP session.

49.747.7246

0

10

20

30

40

50

60

2

91
91.5

92
92.5

93
93.5

94
94.5

Maximum Throughput per Session
(Mbit/s)

Figure 3.2: Bar Graph of Number of TCP Sessions, Maximum Throughput
Per Session, and Minimum Throughput Per Session

Scenario 4: Single/Multiple TCP sessions in presence of UDP sessions

Single TCP Session in Presence of Single/Multiple UDP Sessions

According to the Figure 4.1, the value of throughput where default values of parameters are
applied and no UDP session is present is 94.1 Mb/s. TCP throughput is 93.2 Mb/s (reduced by 0.90
Mb/s) in presence of one UDP session and 92.1 Mb/s (reduced by 2.00 Mb/s) in presence of two
UDP sessions. These reductions in TCP throughput values by multiples of 1 Mb/s, which is close to
the value of each UDP session’s throughput (i.e. 1.05 Mb/s), indicate that, in presence of UDP
session, the throughput is shared between the TCP session and the UDP session.

Figure 4.1: Bar Graph of Average Throughput of One TCP Session
in Presence of Single/Multiple UDP Sessions

Multiple TCP Sessions in Presence of Single/Multiple UDP Sessions

According to the Figure 4.2, the throughput values of two TCP sessions in presence of one
UDP session (93.1 Mb/s) and two UCP sessions (92.1 Mb/s) are lower than that of only single TCP
session (94.1 Mb/s) since the throughput is shared among two TCP sessions and UDP sessions. These
differences are multiples of 1 Mb/s, the throughput of one UDP session.

36.9
32.331.42

23.53
26.9

14.6

3 4

Maximum Throughput
per Session (Mbit/s)

Average Throughput
(Mbit/s)

Minimum Throughput
Per Session (Mbit/s)

94.1

93.2

92.1

1xTCP 1xTCP + 1xUDP 1xTCP + 2xUDP

Maximum Throughput per Session
(Mbit/s)

Figure 3.2: Bar Graph of Number of TCP Sessions, Maximum Throughput
Per Session, and Minimum Throughput Per Session

Scenario 4: Single/Multiple TCP sessions in presence of UDP sessions

Single TCP Session in Presence of Single/Multiple UDP Sessions

According to the Figure 4.1, the value of throughput where default values of parameters are
applied and no UDP session is present is 94.1 Mb/s. TCP throughput is 93.2 Mb/s (reduced by 0.90
Mb/s) in presence of one UDP session and 92.1 Mb/s (reduced by 2.00 Mb/s) in presence of two
UDP sessions. These reductions in TCP throughput values by multiples of 1 Mb/s, which is close to
the value of each UDP session’s throughput (i.e. 1.05 Mb/s), indicate that, in presence of UDP
session, the throughput is shared between the TCP session and the UDP session.

Figure 4.1: Bar Graph of Average Throughput of One TCP Session
in Presence of Single/Multiple UDP Sessions

Multiple TCP Sessions in Presence of Single/Multiple UDP Sessions

According to the Figure 4.2, the throughput values of two TCP sessions in presence of one
UDP session (93.1 Mb/s) and two UCP sessions (92.1 Mb/s) are lower than that of only single TCP
session (94.1 Mb/s) since the throughput is shared among two TCP sessions and UDP sessions. These
differences are multiples of 1 Mb/s, the throughput of one UDP session.

Maximum Throughput
per Session (Mbit/s)

Average Throughput
(Mbit/s)

Minimum Throughput
Per Session (Mbit/s)

Figure 4.2: Bar Graph of Average Throughput per Session and Average Throughput
of Two TCP Sessions in Presence of Single/Multiple UDP Sessions

46.47

0

20

40

60

80

100

2xTCP + 1xUDP

Figure 4.2: Bar Graph of Average Throughput per Session and Average Throughput
of Two TCP Sessions in Presence of Single/Multiple UDP Sessions

46.47 46.06

93.1 92.1

2xTCP + 1xUDP 2xTCP + 2xUDP

Average
Throughput Per
Session (Mbit/s)
Average
Throughput
(Mbit/s)

Figure 4.2: Bar Graph of Average Throughput per Session and Average Throughput
of Two TCP Sessions in Presence of Single/Multiple UDP Sessions

Appendix

Section 1: Throughput of Varying Application/Protocol Parameters (Scenario 1)

TCP receive buffer/window size
of server computer (KBytes) Throughput(Mbit/s)

2 29.50
3 43.60
4 50.77

10 61.82
13 77.40
15 84.50
17 92.00
20 93.60
40 93.93
60 94.00

85.3 (Default) 94.30
160 94.13
320 94.17

TCP receive buffer/window size
of client computer (KBytes) Throughput(Mbit/s)

1 62.47
2 62.60
4 62.60
5 62.50

5.5 91.60
6 91.80
8 92.83

16 (Default) 94.30
24 94.03
32 94.03

Length of Data Written/Read by
Application of Server (KBytes) Throughput(Mbit/s)

4 94.17
6 94.10

8 (Default) 94.23
10 94.20
12 94.13

Length of Data Written/Read by
Application of Client (KBytes) Throughput(Mbit/s)

4 94.27
6 94.23

8 (Default) 94.20
10 94.17
12 94.10

BDP (1000 KBytes)
Receiver Window Size (Server) Average Throughput

10 1.14
20 2.28
30 3.94
40 5.57
50 6.72
60 8.25
70 9.77
80 10.80
90 12.25

100 13.70
120 15.80
140 18.50
160 20.80
180 23.90
200 24.90
300 25.60
500 25.60
700 25.60

1000 25.60

Section 2: Throughput of Varying Network/Link Conditions (Scenario 2)

Link Data Rate
Link Data Rate (kilobits) Throughput (Mbits/s) Percentage

100 0.095 95.00%
500 0.476 95.20%

1000 0.954 95.40%
1500 1.417 94.47%
2000 1.897 94.85%
3000 2.840 94.67%
4000 3.790 94.75%
5000 4.767 95.34%
6000 5.730 95.50%
7000 6.467 92.39%
8000 7.667 95.84%
9000 8.463 94.03%

10000 9.490 94.90%

Link Delay

Link Delay Interval (ms) Throughput
(Mbits/s)

10 80.32
50 71.90

100 64.48
120 45.70
150 41.62
200 33.23
250 22.85
300 24.33
400 20.43
500 14.90
700 8.57

Packet Drop Rate
Probability of Dropping

Packet
Throughput

(Mbits/s)
0.01 82.95
0.02 51.42
0.03 33.88
0.04 21.45
0.05 13.85
0.07 6.71
0.1 3.21
0.2 0.61

Section 3: Throughput of Multiple TCP Sessions (Scenario 3)

2xTCP (Two TCP Sessions)
Attempt Session Throughput Per Session (Mbit/s) Total Throughput (Mbit/s)

1 1 47.6 94.1
2 48.2

2 1 46.6 94.1
2 48.2

3 1 46.0 94.1
2 49.7

max
throughput/session 49.7

min
throughput/session 46.0

3xTCP (Three TCP Sessions)
Attempt Session Throughput Per Session (Mbit/s) Total Throughput (Mbit/s)

1 1 32.1 94.1
2 34.5
3 27.8

2 1 33.1 94.1
2 27.8
3 33.2

3 1 32.0 94.1
2 31.4
3 31.1

4 1 29.5 94.1
2 36.9
3 27.8

5 1 36.8 94.1
2 26.9
3 30.4

max
throughput/session 36.9

min
throughput/session 26.9

4xTCP (Four TCP Sessions)
Attempt Session Throughput Per Session (Mbit/s) Total Throughput (Mbit/s)

1 1 32.3 94.1
2 21.8
3 14.6
4 25.5

2 1 23.5 94.1
2 25.7
3 20.6
4 24.3

3 1 26.6 94.1
2 28.9
3 19.3
4 19.3

max
throughput/session 32.3

min
throughput/session 14.6

Section 4: Throughput of Single/Multiple TCP Sessions in Presence of UDP Sessions (Scenario 4)

1xTCP + 1xUDP
Attempt Throughput (Mbit/s)

1 93.2
2 93.2
3 93.2

1xTCP + 2xUDP
Attempt Throughput (Mbit/s)

1 92.1
2 92.1
3 92.1

2xTCP + 1xUDP
Attempt Session Throughput (Mbit/s) Total Throughput (Mbit/s)

1 1 45.6 93.1
2 47.5

2 1 48.5 93.1
2 44.6

3 1 49.2 93.1
2 42.9

4 1 46.3 93.1
2 46.8

5 1 42.5 93.1
2 50.6

6 1 47.9 93.1
2 45.2

2xTCP + 2xUDP
Attempt Session Throughput (Mbit/s) Total Throughput (Mbit/s)

1 1 45.7 92.1
2 46.4

2 1 48.3 92.1
2 43.9

3 1 48.4 92.1
2 43.7

4 1 48.6 92.1
2 43.5

5 1 46.1 92.1
2 46.0

6 1 53.3 92.1
2 38.8

