

Internet Technologies and Applications

Contents

- Summary of IPv6 core features
- Auto-configuration
- IPv4-IPv6 transition techniques
- IPv6 networks today

Motivation

- Current version of TCP/IP
 - Worked well for over 25 years!
 - Design is flexible and powerful
 - Has adapted to:
 - New computer and communication technologies
 - New applications
 - Increases in size and load
- Most significant problem with IPv4
 - Address space limitation
 - How long can we last with 2³² (4 billion) addresses?
 - Limitations due to address classes
 - Extended lifetime due to private addresses and NAT
 - Not every computer has a public IP address
 - Initial estimates in 1990's were: 2005 to 2010
 - Current estimates: 2020 to 2025

IPv6

- RFC 2460 released in 1998
 - Designed in early and mid 1990's
- Major new features
 - Larger addresses
 - Extended address hierarchy: ISPs can assign blocks of address to customers
 - Flexible header format: a base format plus options
 - Improved options: easy to include any combination of options
 - Provision for protocol extension: easy to adapt for new options and features
 - Support for autoconfiguration: computers can assign local address automatically
 - Support for resource allocation: includes support for DiffServ

IPv6 Addresses

- 128-bit address
 - 3 x 10³⁸ which is 10²⁴ addresses for every square metre of Earth's surface!
- Like IPv4, there is a network portion and host portion
- Notation
 - 8 x 4 hexadecimal numbers
 - 68E6:8C64:FFFF:FFFF:0000:1180:096A:FFFF
 - And many abbreviated forms ...
 - E.g. compress zeros
- Proposed address spaces
 - Includes backward compatible option for IPv4 addresses
 - E.g. 80 0 bits, 16 bits (0 or FFFF), then IPv4 address

IPv6 Address Space

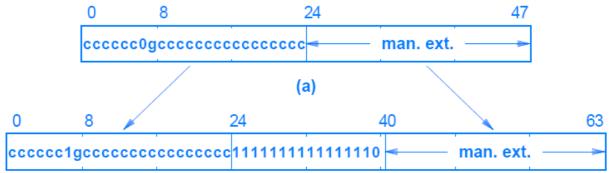
Binary Prefix	Type Of Address	Part Of Address Space
0000 0000	Reserved (IPv4 compatibility)	1/256
0000 0001	Unassigned	1/256
0000 001	NSAP Addresses	1/128
0000 01	Unassigned	1/64
0000 1	Unassigned	1/32
0001	Unassigned	1/16
001	Global Unicast	1/8
010	Unassigned	1/8
011	Unassigned	1/8
100	Unassigned	1/8
101	Unassigned	1/8
110	Unassigned	1/8
1110	Unassigned	1/16
1111 0	Unassigned	1/32
1111 10	Unassigned	1/64
1111 110	Unassigned	1/128
1111 1110 0	Unassigned	1/512
1111 1110 10	Link-Local Unicast Addresses	1/1024
1111 1110 11	IANA - Reserved	1/1024
1111 1111	Multicast Addresses	1/256

IPv6 Datagrams

• General format:

 Base header is required; also multiple optional headers allowed

IPv6 Datagrams


- Extension Headers:
 - Each extension header has a "Next Header" field which says what is the type of next header
 - Examples:
 - Fragmentation
 - Routing
 - Security
 - Hop-by-hop options
 - ...

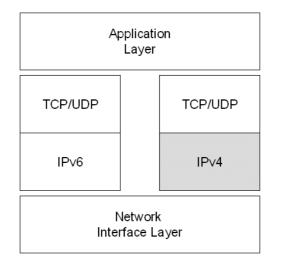
Link Local Addresses

- Used for computers within a single network
- A router will never forward a datagram from a link-local address outside of the network
- Useful for configuration of the network and in isolated networks (e.g. peer-to-peer wireless network)
- First 10 bits of address are:
 - 1111 1110 10

Autoconfiguration in IPv6

- IPv6 supports serverless or stateless autoconfiguration
 - Do not need a DHCP server to configure computers IP address
 - Relies on:
 - Link local addresses
 - Embedded interface identifiers
- Embedded interface identifiers
 - Example: 48-bit IEEE MAC address (e.g. your network card address)
 - Split into company identifier (c) and manufacturers extensions
 - In IPv6 becomes 64-bit identifier

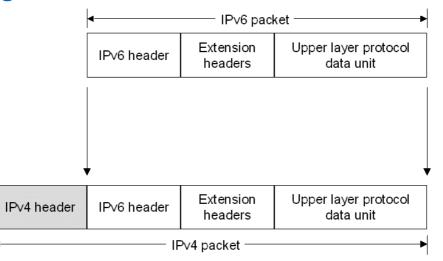
Autoconfiguration in IPv6


- 1. Host generates IPv6 link-local address from:
 - Link-local prefix (1111 1110 10), 54 zeros and 64 bit embedded interface identifier
- 2. Checks whether the generated address is unique on the network
 - Performs Duplicate Address Detection
 - Send *Neighbour solicitation* to local network with source of 0 and destination of the generated address
 - If someone responds (that is, they already have the generated address) then not unique, and try another address or do manual configuration
 - If no response after timeout, then assume its unique
- 3. Host sends a *router solicitation* to see if a router is on the network
- 4. Router may respond wit *router advertisement* which includes information for the host
 - E.g. Router may send global prefix, so host can change from link-local address to global IPv6 address
- Also options of using random identifiers for link-local addresses rather than 48-bit MAC address (useful for privacy)

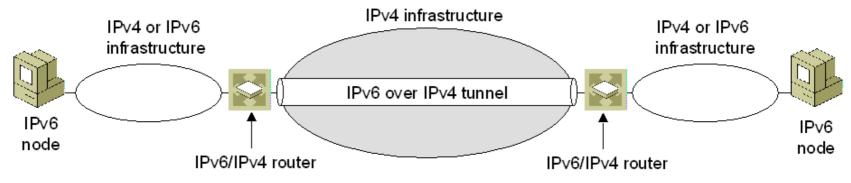
Transition from IPv4 to IPv6

- IPv4 and IPv6 are incompatible
- How do we upgrade our networks in a practical way?
- The aim:
 - IPv4 hosts can be upgraded at any time
 - New hosts, using IPv6, can be added at any time
 - Existing IPv4 hosts, with IPv6 installed, can continue to use IPv4 address
 - Little preparation require to upgrade IPv4 to IPv6 hosts
- The solutions:
 - Dual stack
 - IPv6 over IPv4 Tunnelling

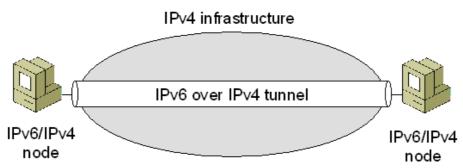
Transition with Dual Stack


• Implement both IPv4 and IPv6

- Allows nodes to communicate with both IPv4 and IPv6 nodes easily
- Makes the implementation and management more complex
- Usually makes use of tunnelling or protocol translation
 - E.g. the IPv6 stack may still use tunnelling over IPv4

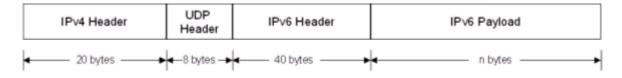

Transition with Tunnelling

• IPv6 datagrams are tunnelled inside IPv4 datagrams

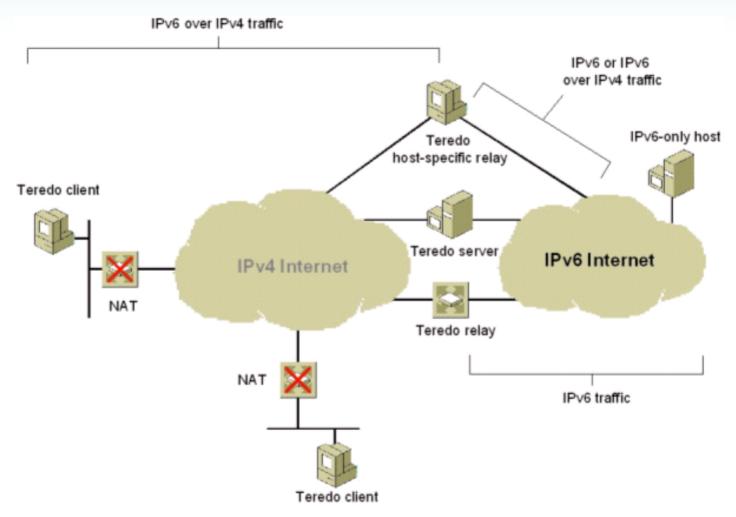


Transition with Tunnelling

• Router to Router



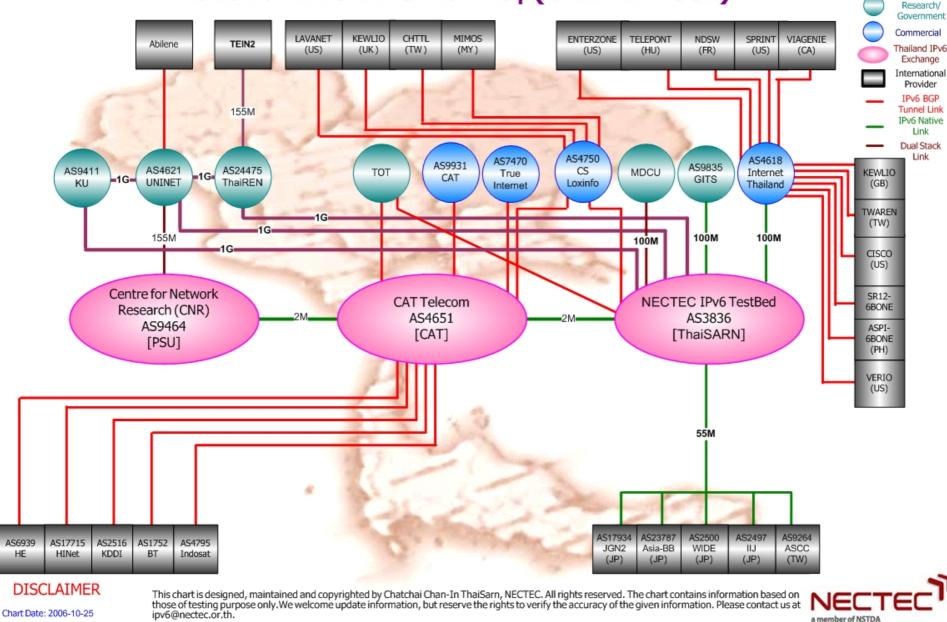
• Host to Host



6to4 and Teredo Tunnelling

- 6to4 Tunnelling
 - Automatic setup of tunnels and address mapping
 - Carries IPv6 datagrams in IPv4 datagrams
 - Requires 6to4 routers to create tunnel endpoints
 - Good solution for medium and large networks
- Teredo Tunnelling
 - Tunnel endpoints created host to host
 - Suitable for small/home office using NAT
 - NATs often don't handle IPv4 datagrams with header 41 (i.e. IPv6)
 - IPv6 datagram carried in UDP packet in IPv4 datagram
 - UDP is easier to traverse the NAT
 - Teredo is used in Microsoft Windows XP and Vista

Teredo Tunnelling


Issues with IPv6

- Is the upgrade needed?
 - The address space problem still exists, but NATs have extended the lifetime of IPv4 address by 15-20 years
- What additional features does IPv6 offer?
 - Autoconfiguration, in-built security, mobility, QoS
 - But these are all possible in IPv4 now (as options)
- How to do the transition?
 - There are well known techniques being used and successfully demonstrated

IPv6 Networks

- 6Bone
 - Experimental IPv6 deployment that finished in 2006 (ran for 10 years)
- Now most countries/organisations have experimental and operational IPv6 networks
- IPv6 Implementations
 - Most commercial routers support IPv6
 - Most current operating systems support IPv6
 - Windows XP/Vista, various Linux and BSD OS's, MAC, ...
- What is holding IPv6 back?
 - Larger support from ISPs, training and management about IPv6, what is the need to switch?

Thailand IPv6 Internet Map(October 2006)

Academic/