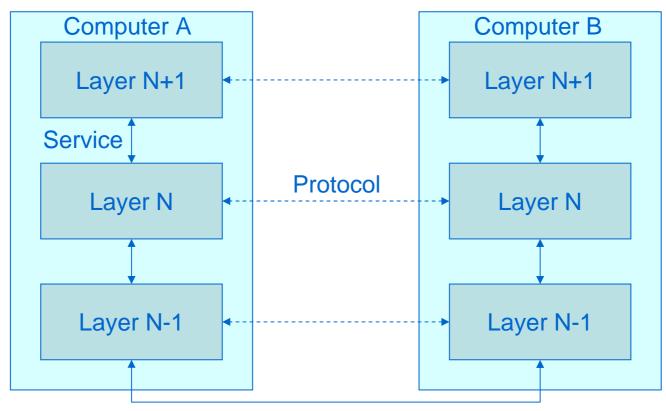
Basics of Computer Networking

Internet Technologies and Applications

Contents


- Layered Architectures
- Network Organisation
- Internet Architecture
- Internet Protocols and Applications
- Network Analysis Tools

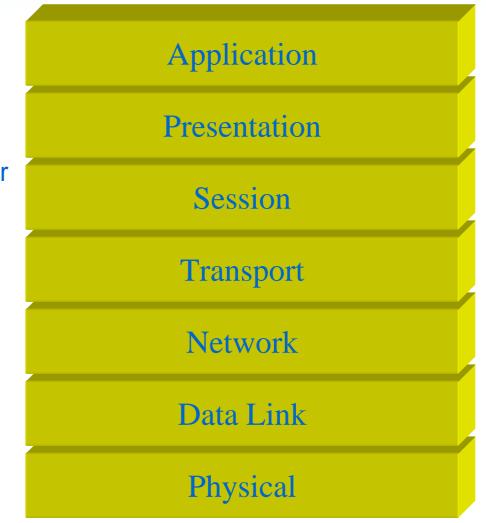
This is a refresher!

- Prerequisite courses should cover basics of networking and the Internet
- You should already know this material!
 - (If not, please tell me)
- This is not a comprehensive coverage of networking
 Only mention concepts/protocols that are important for course
- Consult the reading resources for details

Layered Architectures

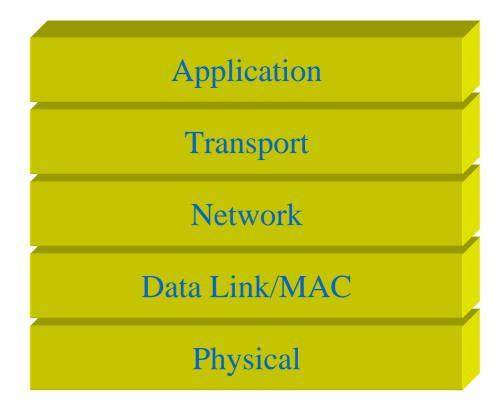
- Communication networking is hard! Therefore, divideand-conquer
- In networking, this is done in layers

Layered Architectures


- Concepts:
 - Each node (e.g. computer) has a layered protocol stack
 - Actual communication goes from top to bottom layer on sending node and then bottom to top on receiving node
 - Standard interfaces (services) are defined between layers
 - Conceptually, a layer N protocol entity on sending node "talks to" layer N protocol entity on receiving node
 - Therefore, we can consider protocols at each layer separately
 - A protocol provides a service to the higher layer and uses the service of the lower layer
- Examples:
 - Open Systems Interconnection Reference Model (OSI RM) (formal)
 - Model of the Internet (informal)

Layered Architectures

- Advantages
 - Break a large problem into several smaller problems
 - Can design and implement protocols without knowing details of other layers
 - Networks can be built by mix-and-matching different implementations, e.g. use Motorola for layer 1 and 2, Cisco for layer 3 and Microsoft for layer 4 and 5
 - Maintenance and upgrades are easier (only have to change one layer)
- Disadvantages
 - Overheads of layer to layer communications (e.g. headers)
 - Inflexible when optimisations are needed (e.g. for security, performance)


OSI Reference Model

- 7-layer protocol stack
- Developed by ISO as a standard for Open Systems Interconnection
- Protocols developed by ISO for each layer
- No longer significant
 commercial technologies

Internet Protocol Stack

- 5-layer protocol stack
- Based on what is actually in use in the Internet
- Less formal than OSI
- We will use this as conceptual model in course

Physical Layer (Layer 1)

- Transmission of bits over physical media
- Media include: twisted pair copper wire, optical fibres, radio frequencies, ...
- Some tasks of Physical layer:
 - How to modulate bits to be sent as analog signals (e.g. volts, waves). And the reverse demodulation.
 - How to encode information efficiently so as little is sent as possible, but the original information can be correctly decoded at received
- Examples:
 - SDH/SONET, E1/T1, Optical fibre, copper, ...
 - IEEE 802 standards (Ethernet, Wireless LAN);
 - Wireless transmission systems (GSM, 3G);

Data Link Layer (Layer 2)

- Transmission of frames over links
 - Provide reliable link to network layer
 - Error detection and correction
 - Retransmission schemes, such as automatic repeat request (ARQ)
 - Stop-and-wait, Go-back-N, Selective Repeat
 - Broadcast networks: how to share the channel amongst users
- Examples:
 - IEEE 802.2 Logical Link Control
 - IEEE 802 MAC layers (Ethernet, WLAN, Bluetooth, ...)
 - HDLC, PPP, ATM, Frame Relay, FDDI, ...
 - SDH/SONET, T1/E1, ...

Network Layer (Layer 3)

- End-to-end packet delivery
 - Sometimes reliable delivery, for example provide some level of quality of service
- Interconnect different links/networks
- Routing: how to find a path from source to destination
- Flow control, error control, segmentation and reassembly, addressing, ...
- Examples:

- IP, IPX, X.25, CNLP, ...

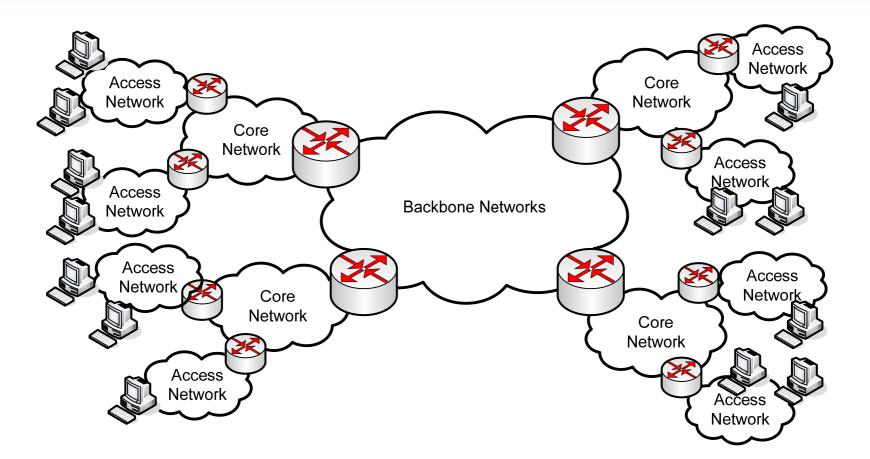
Transport Layer (Layer 4)

- Data delivery between endpoints (hosts, processes)
- May include:
 - Connection-orientation
 - Reliability
 - Flow and congestion control
 - Stream or message oriented
- Multiplexing: sending data from multiple processes over one link/network
- Examples:
 - TCP, UDP, OSI TP, SCTP, ...

Application Layer (Layer 5)

- Provide common services to application processes or other application protocols
 - File transfer, mail/message delivery, directory and naming services, remote access/login, …
- Examples:
 - HTTP, FTP, Instant messaging protocols, SNMP, DNS, Telnet, DHCP, POP3, ...

Circuit vs Packet Switching

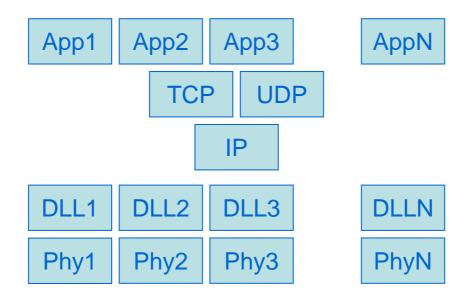

- Circuit Switching
 - Establish a physical circuit between end-points
 - Example: Traditional telephone network
 - Requires a connection-setup process
 - Guarantees set resource (bandwidth) for duration of connection
 - May not use entire bandwidth all the time
- Packet Switching
 - Break data into packets and multiplex packets from various sources (computers) onto circuit
 - Example: Internet
 - Packets must carry destination information
 - No guarantee of bandwidth, e.g. if more packets are sent than the circuit can handle, then some packets will be dropped
 - More efficient use of bandwidth statistical multiplexing
- Computer networks use packet switching for cost and performance advantages

Connection-oriented vs Connectionless

Connection-oriented

- End-systems (hosts or software processes) perform an "handshake" to setup a connection *before* they transfer data
 - Once setup, often the sender/receiver can control the connection to control the rate and reduce errors
 - But extra delay (and complexity) due to setup
- Example: TCP
- Connectionless
 - Send the data immediately
 - No delay of connection setup
 - But recipient cannot expect packets, hence hard to provide reliability
 - Example: UDP

Network Organisation


Note: this is a simplistic view; in reality, much more complex, for example, multiple layers in the hierarchy

Access, Core and Backbone Networks

- Access Networks
 - Provide user-level access
 - Home, office, campus, building, ...
 - IEEE 802 networks, e.g. 100Mb/s or 1Gb/s Ethernet or wireless LAN
 - Dial-up and ADSL for residential access
 - GSM/GPRS/3G for mobile access
- Core Networks
 - Single provider network interconnecting access networks and backbone
 - Telecommunications provider (e.g. AIS, TOT) network or ISP
 - Large organisations (e.g. company or university with several sites)
 - Use ATM, MPLS, SDH/SONET and IP
- Backbone Networks
 - Bulk data transfer over cities, countries, continents
 - Telecommunication providers or ISPs
 - Optical or satellite links, SDH/SONET, ATM
- We may refer to core and backbone together as *transport networks*

Internet Architecture

- Observations about communication networks:
 - No single network hardware technology can meet requirements of all applications
 - Users want to be able to connect to anyone
- Internets hide the network technology and allow many different networks to interconnect
 - Interconnection through routers (network layer)

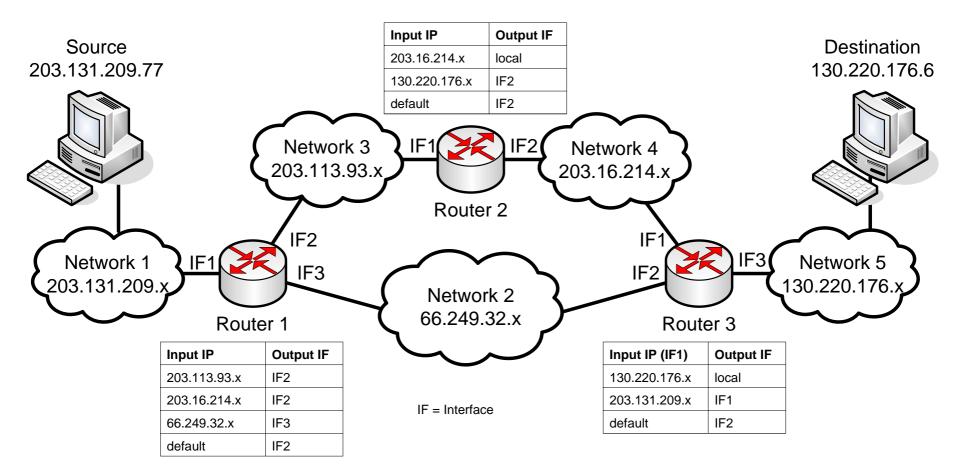
The IP Datagram

- Most common size (no options) is:
 - 20 byte header
 - Up to 65,535 bytes of payload
- Header includes:

. . .

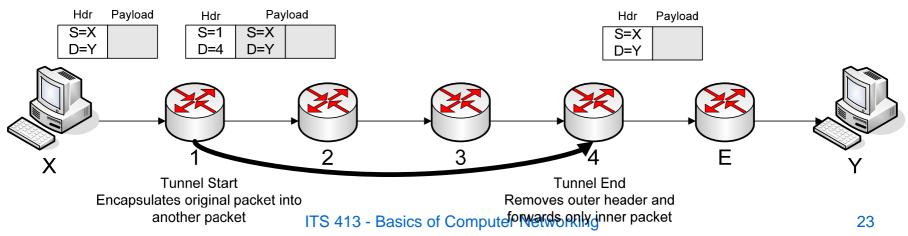
- IP address of source host and destination host
- Field that identifies the protocol carried in payload (e.g. TCP)

0	4	8	16	19	24	31
VERS	HLEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS	FRAGMENT OFFSET		
TIME T	TIME TO LIVE PROTOCOL			HEADER CHECKSUM		
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP OPTIONS (IF ANY)					PADDING	
DATA						


IP Addressing

- 32-bit addresses to identify hosts
- Address is conceptually split in two:
 - 1. Network address: identifying the network
 - 2. Host address: identifying the host on that network
- Convenient dotted-decimal form:
 - E.g. 172.16.0.1, 66.249.89.104, 203.131.209.77
- Other addresses:
 - Address Resolution Protocol (ARP) is used to map IP addresses to hardware address:
 - Example: IEEE 802 devices have unique 48-bit address
 - Domain Name System (DNS) maps human readable domain names to IP addresses

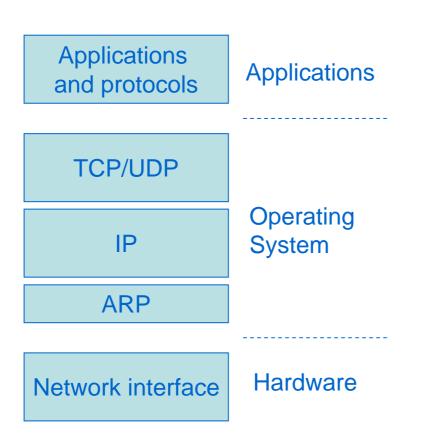
IP Routing


- Routers interconnect networks
- IP datagrams are forwarded by routers based on destination IP address
- When router receives IP datagram:
 - If destination network address same as router, then send datagram directly to destination host (e.g. via Ethernet)
 - Otherwise, lookup forwarding (routing) table to determine the next network to reach destination. Send datagram to next router
- Routing protocols
 - Distribute topology information throughout the internet
 - Populate the forwarding tables so router knows next router/network to use to reach destination

IP Routing Example

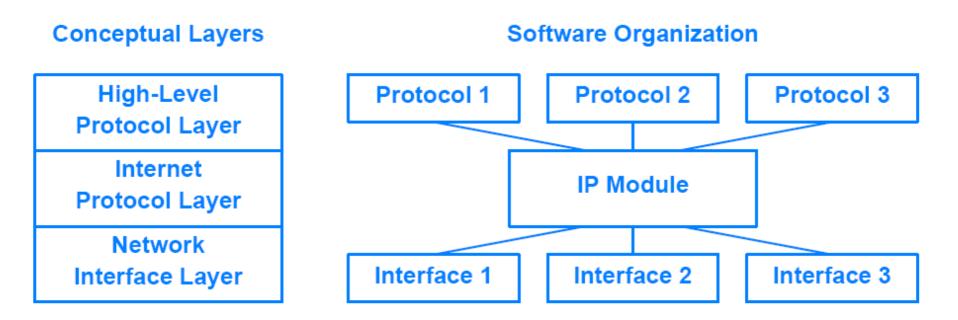
Tunnelling and Encapsulation

- Tunnelling: generic network mechanism for sending a packet inside another packet of the same type
 - Example: IP datagram inside another IP datagram
 - Encapsulate the packet inside another packet at one end-point of tunnel, and de-capsulate at other end-point of tunnel
- Used often for security, mobility, private networks, ...
- Both tunnel end-points must be aware tunnelling is being used

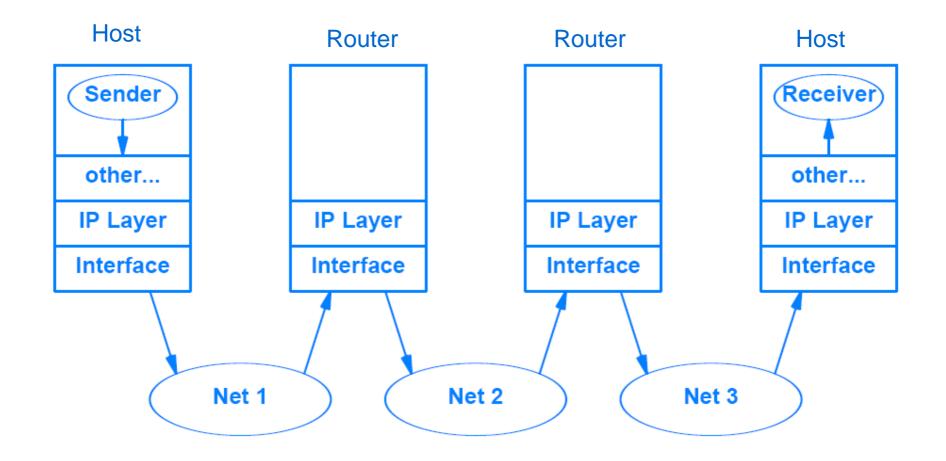

IPv6

- Aims to replace current version, IPv4, to:
 - Increase number of addresses (4 billion in v4, 3x10³⁸ in v6!)
 - Update features, remove unused features
 - Incorporate security
- IPv6 has been defined and tested
 - Some experimental v6 networks are 10 years old
 - Operating systems and routers support IPv6
- Still not commonly used!
 - Minor issues with transition from IPv4 to IPv6
- We will look at some IPv6 mechanisms in later topic

Internet Protocols and Applications


- Network (and Related) Protocols
 - IP
 - ICMP: error reporting and management
 - ARP: mapping IP addresses to hardware addresses
- Transport Protocols
 - Transmission Control Protocol (TCP): Reliable stream service
 - User Datagram Protocol (UDP): Unreliable, best effort protocol
 - Socket interfaces programming Internet applications
- Application Protocols
 - HTTP: web browsing
 - FTP: file transfer
 - SMTP: email transfer
 - DNS: mapping domain names (<u>www.google.com</u>) to IP addresses (66.249.32.77)
- Many others!
- ITS 413 Basics of Computer Networking

Internet Protocol Implementation



- Operating system implements TCP/IP
- Interface from application to OS is *sockets interface*
 - socket(), bind(), connect(),
 listen(), send(), recv(), ...
- Interface from OS to hardware is *drivers*

Internet Protocol Implementation

Internet Protocol Implementation

Internet Application Architectures

- Client/Server Model (e.g. web, email, file transfer)
 - Requires an 'always-on' host as server, e.g. Web server
 - Server has well-known address (IP address, port)
 - Client sends request to server, and server responds
 - Reliable, manageable distributed system
- Peer-to-Peer Model (e.g. file sharing, telephony)
 - Hosts (peers) talk to each other; no central server
 - Peers are not required to be always-on, do not need well-known address
 - Highly scalable, but hard to manage
- Hybrids (e.g. file sharing, instant messaging)
 - Use server for indexing/searching, then peer-to-peer
- Implementations
 - P2P is still implemented with client/server processes; peer just runs both client and server

Network Analysis

- Software and hardware tools to analyse and understand network behaviour
- Ethereal (www.ethereal.com)
 - Open source software for capturing packets send by interface card
 - www.ethereal.com
- OPNET IT Guru (www.opnet.com)
 - Commercial network simulation and analysis software
- We will use Ethereal and OPNET IT Guru throughout course for examples and demonstration
- You should be familiar with basic operation of Ethereal
- Other useful (simple) tools
 - ping test connectivity to a host
 - traceroute or tracert identify route to host
 - nslookup find match between domain name and IP address

OPNET IT Guru

- Free Academic Edition of IT Guru; limited capabilities
- Network modelling and analysis software. Basic steps of use:
 - 1. Create network topology: workstations, switches, routers, LANs/WANs, mobile devices, ...
 - 2. Create application traffic: detailed models (e.g. file transfer); generic models (e.g. traffic from 10 LAN users); or real-captured traffic
 - 3. Define metrics/statistics of interest: network utilisation, throughput, delay, dropped packets, ...
 - 4. Run simulation
 - 5. Analyse and plot results
- OPNET IT Guru used for planning new networks and analysing existing networks
 - What happens if we add 100 more users? What if we use protocol X instead of protocol Y?
- OPNET Modeller used for research of existing and new protocols
 - How will protocol X perform in this environment? How will my new protocol perform?