Internet Security

Internet Security

Secure Email

Summary

Internet Security

ITS335: IT Security

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 20 December 2015 its335y15s2l10, Steve/Courses/2015/s2/its335/lectures/internet.tex, r4287

ITS335

Contents

Internet Security

Internet Security

Secure Email

Summary

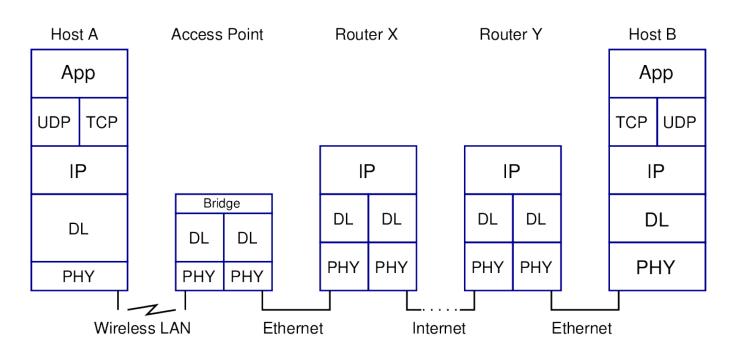
Internet Security

Secure Email

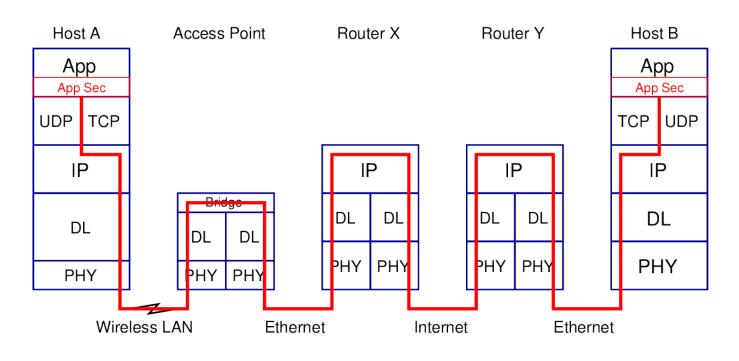
Summary

Internet Security

Internet Security


Secure Email

Summary


Internet Security

- Many Internet protocols were designed assuming trustworthy links, networks and devices
- No security mechanisms built in to: IP, TCP, UDP, HTTP, SMTP, ...
- As networks/devices became less trustworthy, extensions were developed to add security to existing protocols and applications: IPsec, TLS, PGP, ...
- Securing communications across the Internet can be performed at different layers:
 - ► Application, transport, network, link

Internet Topology and Stack Example

Application Level Security: Application-Specific

ITS335

Internet Security

Internet Security

Secure Email

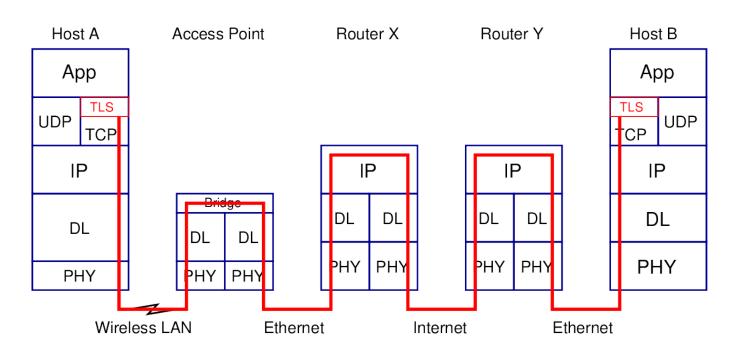
Summary

Application Level Security

Application (protocol) implements its own security mechanisms

Examples

► SSH, Email (OpenPGP, S/MIME), DNSSEC, ...


Advantages

- Host-to-host encryption
- Independent of operating system security features

Disadvantages

 Each application must implement common security mechanisms

Transport Level Security: TLS/SSL

ITS335

Internet Security

Internet Security

Secure Email

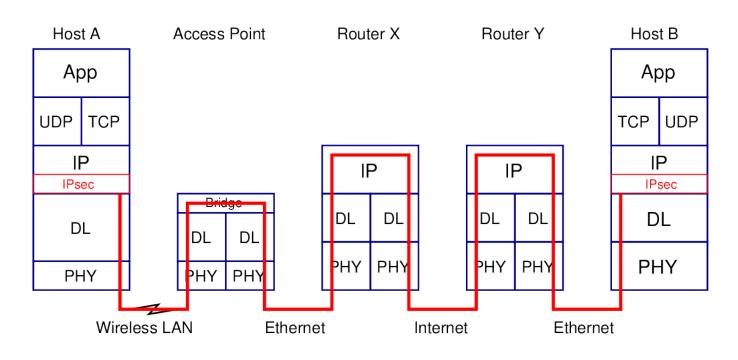
Summary

Transport Level Security

Application uses OS provided library for security

Examples

- TLS/SSL for TCP-based applications, e.g. HTTPS, IMAPS, FTPS, SMTPS
- DTLS, SRTP for other transport protocols


Advantages

- Host-to-host encryption
- Simpler applications; no need to implement complex security mechanisms

Disadvantages

- Only applies for specific transport protocols
- Applications must be implemented to use OS API

Network Level Security: IPsec End-to-End

ITS335

Network Level Security

Internet Security

Internet Security Secure Email

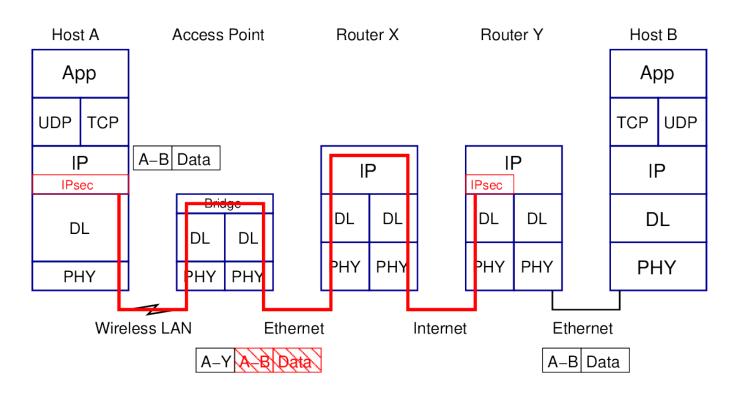
Summary

Computer configured to apply security mechanisms to IP packets

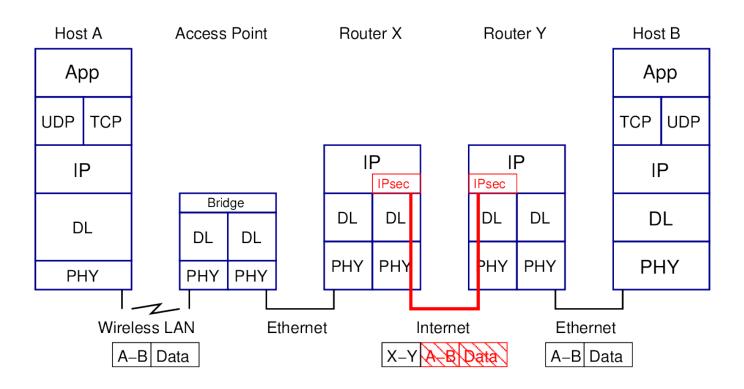
Examples

► IPsec

Advantages


- Supports all applications and transport protocols
- Can be host-to-host encryption

Disadvantages


Requires support and configuration in OS

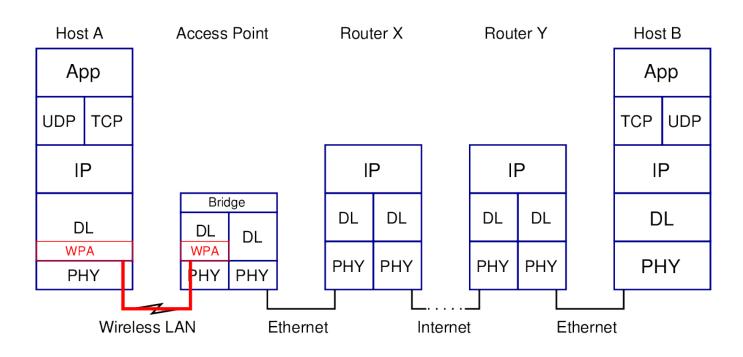
Commonly used in tunnelling mode

Network Level Security: IPsec Host-to-Router

Network Level Security: IPsec Router-to-Router

Internet Security

Internet Security


Secure Email

Summary

Network Level Security: Tunnelling

- Tunnelling: packets at one layer are encapsulated into packets at the same layer
 - ► Network layer: IP-in-IP, IP-in-IPsec
 - ► Application layer: SSH
 - ► Data link layer: PPTP, L2TP
- Create a Virtual Private Network
- Support and configuration of security mechanisms can be provided on routers, rather than hosts
- Does not provide end-to-end encryption

Link Level Security: WPA

Internet Security

Internet Security

Secure Email

Summary

Link Level Security

Examples

 WEP/WPA in wireless LANs, Bluetooth, ZigBee encryption, GSM A3/A5/A8, ...

Advantages

 Applies to all data sent across link, independent of application, transport, network protocols

Disadvantages

- Encryption only across the link
- Requires configuration of both link end-points

ITS335 Contents Internet Security Internet Security Secure Email Summary Internet Security

Secure Email

Summary

Internet Security

Internet Security

Secure Email

Summary

Secure Email

- Email messages originally only text with pre-defined headers (To, From Subject, CC, ...)
- Multipurpose Internet Mail Extensions (MIME) allows for different message and header formats: different character sets, attachments, new headers
- Secure email requirements:
 - 1. Authentication: receiver can confirm the actual sender, and that content is not modified
 - 2. Confidentiality: only sender/receiver can read the contents
- Two common ways to implement secure email:
 - 1. S/MIME
 - 2. OpenPGP
- Both use similar approach: sender signs message with private key, encrypts message with symmetric key encryption using a secret key, and encrypts the secret key using recipients public key

17

ITS335

Internet Security

Internet Security

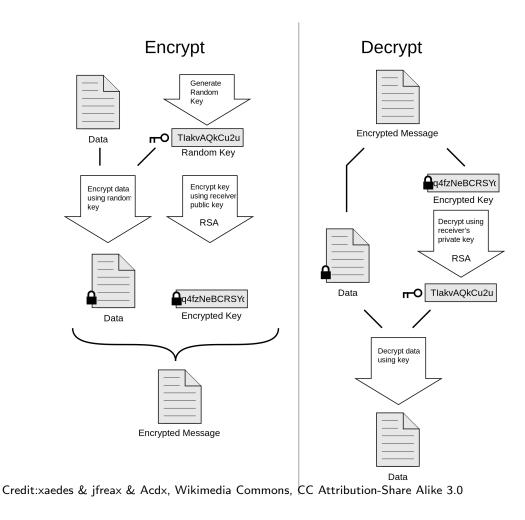
Secure Email

Summary

OpenPGP

- Pretty Good Privacy (PGP) developed by Phil Zimmerman in 1991
- IETF standardised as OpenPGP
- One of first and most widely used applications of public-key cryptography
- Implementations:
 - Original by Zimmerman: Symantec
 - ► GNU Privacy Guard (GPG)
 - Many email clients (either direct or through plugins, e.g. Enigmail, GPG4Win)
- ► OpenPGP vs S/MIME:
 - OpenPGP: public keys distributed informally: phone, websites, email
 - S/MIME: public keys distrubuted as X.509 digital certificates

PGP Operation: Concept


Internet Security

Internet Security

Secure Email

Summary

ITS335

ITS335


PGP Operation: Message Generation at A

Internet Security

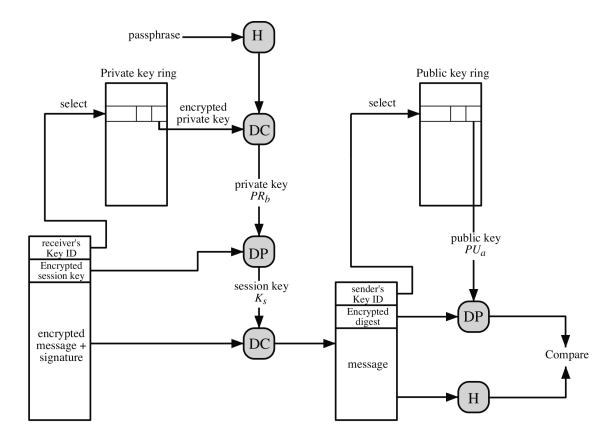
Internet Security

Secure Email

Summary

Credit: Figure 18.5 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

19


PGP Operation: Message Reception at B

Internet Security

Internet Security

Secure Email

Summary

Credit: Figure 18.6 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

21

ITS335 Contents Internet Security Internet Security Secure Email

Summary

Internet Security

Secure Email

Summary

Internet Security

Internet Security

Secure Email

Summary

Key Points

- Many Internet protocols have extensions to support secure communications
- Can apply security mechanisms at different layers: application, transport, network, link
- Trade-offs between: complexity of applications, host-to-host encryption, required support in devices
- VPNs allow for connecting to networks and offering services as if you were physically attached to that network
- HTTPS used for web security
- ► OpenPGP and S/MIME common for email security

ITS335

Internet Security

Internet Security

Secure Email

Summary

Security Issues

- ► Key distribution: must be sure public key is correct
- Man-in-the-middle attacks are possible if public keys are not authentic
- Different support of algorithms/protocols by devices, operating systems and applications
- Bugs in implementations create security vulnerabilities

23

Internet Security

Internet Security

Secure Email

Summary

Areas To Explore

- Application level security: DNSSEC, OpenPGP and S/MIME
- Virtual private networks with IPsec, L2TP, PPTP and others
- Trust levels with public key distrubtion