Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

**Web Security** 

ITS335: IT Security

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 2 February 2014 its335y13s2l09, Steve/Courses/2013/s2/its335/lectures/websecurity.tex, r3104

ITS335

**Contents** 

Web Security

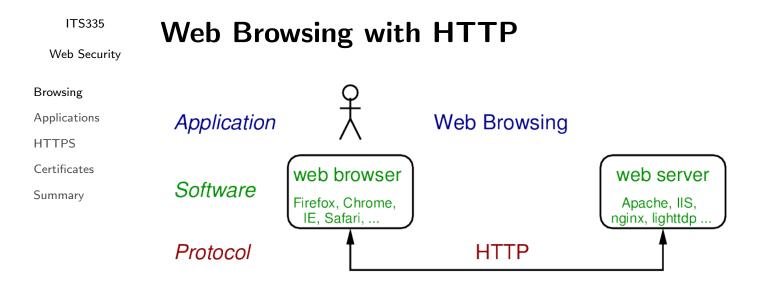
Browsing

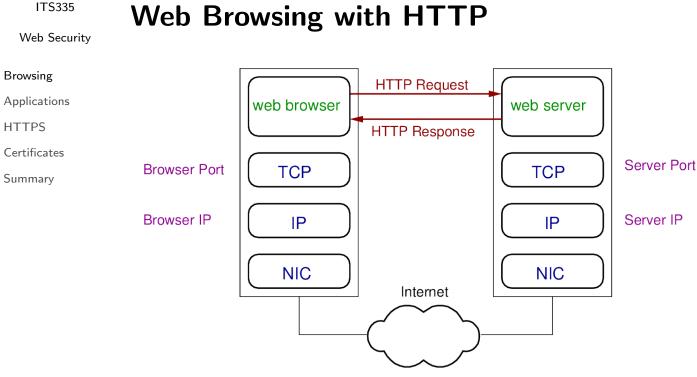
Applications

HTTPS

Certificates

Summary


Web Browsing


**Web Applications** 

**Confidential Web Communications with HTTPS** 

**Digital Certificates** 

**Summary** 





Web Security

#### Browsing

Applications

**HTTPS** 

Certificates

Summary

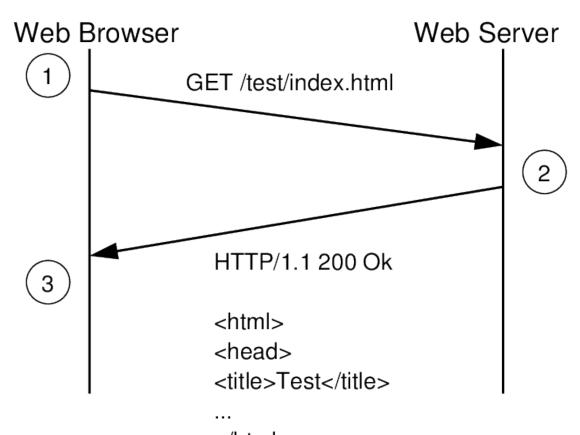
## Web Access with Hypertext Transfer Protocol

- ► HTTP is a request/response protocol for web browsing
- ► HTTP is stateless; no dependence between a request and previous request
- ► User Agent (client) sends HTTP Request message
- ► Server responds with HTTP Response message
- ▶ Default server port number: 80
- ► Generic HTTP message format:

Start line
Optional header lines
<empty line>
Optional message body

- ► Start line differs for request and response
- ► Header format: field-name: value

ITS335


Web Security

## HTTP Example

Applications
HTTPS
Certificates

Browsing

Summary



</html>

6

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

### **HTTP** Request Messages

► Start line: Method URL Version

- ► Methods:
  - ► GET: retrieve the resource at the specific URL
  - ► HEAD: same as GET, except do not return message body (only header)
  - ► OPTIONS: retrieve options available for resource or server
  - ► POST: asks server to accept and process the attached data at the resource
  - ▶ ...
- ▶ Version: version of HTTP, e.g. HTTP/1.0, HTTP/1.1

ITS335

Web Security

#### Browsing

Applications

HTTPS

Certificates

Summary

## **HTTP** Response Messages

- ► Start line: Version StatusCode StatusReason
- ► Status Codes and Reasons:
  - ▶ 100: Continue (the client should continue with its request)
  - ▶ 200: OK (the request succeeded)
  - ► 301: Moved Permanently (the requested resource has a new URL)
  - ▶ 304: Not Modified (resource hasnt changed since last request, client should use cached copy)
  - ► 401: Unauthorized (request must include user authentication)
  - ► 403: Forbidden (request was understood, but server refuses to process it)
  - ► 404: Not Found (server cannot find resource at requested URL)
  - ► 503: Service Unavailable (server currently unable to handle request, e.g. server is too busy)

Web Security

..........

Browsing

Applications

**HTTPS** 

Certificates

Summary

#### **HTTP Headers**

► Date: data and time of message generation

- ► Host: domain name of host of resource (means relative URLs can be used)
- ► Accept-Charset, Accept-Encoding, Accept-Language: indicate the character sets, encodings and languages that client can accept
- ► Authorization: include user credentials (e.g. username, password) if authorization is required
- ► User-Agent: indicates information about the client (user agent), e.g. web browser
- ► Referrer: URL from which this request came from
- ► Content-Encoding: encoding or compression, e.g. gzip
- ► Content-Length: length of message body on bytes
- ► Content-Type: the type of content in message body
- ► Last-Modified: indicates data/time when content was last modified on server

ITS335

**Contents** 

Web Security

Browsing

Applications

HTTPS

Certificates

Summary

Web Browsing

**Web Applications** 

Confidential Web Communications with HTTPS

**Digital Certificates** 

**Summary** 

Web Security

**Web Applications** 

Browsing

Applications

HTTPS

Certificates

Summary

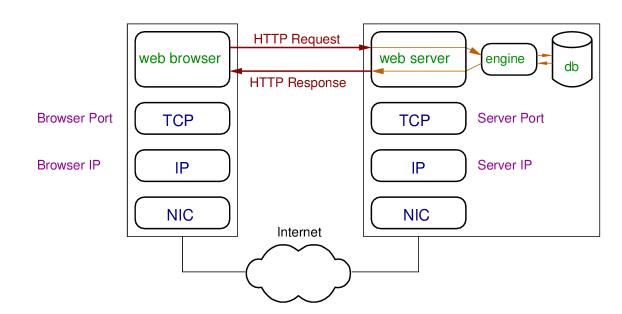
- ► Plain, static web pages: HTML, images and other files served to browser
- ▶ But many applications use dynamic content
  - ► Content server to browse changes depending on request
  - ▶ Provides interactive, tailored content
  - ► Client-side: JavaScript, Flash, Silverlight, Java
  - ► Server-side: CGI, ASP, PHP, Coldfusion, Java, ...
  - ► Content stored in databases

11

ITS335

Web Security

Browsing


Applications

HTTPS

Certificates

Summary

# Dynamic Content with Server-Side Processing



Web Security

What are the security issues?

Browsing

Applications

HTTPS

Certificates

Summary

- ► Data transmitted between browser and server is confidential: encryption with HTTPS
- ► Browser sure it is communicating with intended server: digital certificates
- ► Server sure it is communicating with intended user: password authentication, session management
- ► Actions performed by server (engine) are appropriate: authentication, access control
- ► Actions of user (of browser) are kept private: anonymity services

13

ITS335

**Contents** 

Web Security

Browsing

Applications

Web Browsing

**HTTPS** 

Certificates

Summary

Web Applications

#### **Confidential Web Communications with HTTPS**

**Digital Certificates** 

**Summary** 

**HTTPS** 

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

► HTTPS: HTTP over SSL (or TLS)

- ► URL uses https://
- ▶ Web server listens on port 443
- ► Encrypt: URL of requested document, contents of document, contents of browser forms, cookies, contents of HTTP header
- ► Server is authenticated using certificate (using SSL)
- ► Client is authenticated using password (using HTTP)

15

ITS335

Web Security

Browsing

Applications

HTTPS

Certificates

Summary

#### SSL and TLS

- Secure Sockets Layer (SSL) originated in Netscape web browser
- ▶ Transport Layer Security (TLS) standardised by IETF
- ► SSLv3 and TLS are almost the same
- SSL provides security services to application layer protocols using TCP
- ► SSL architecture consists of multiple protocols

#### **SSL** Architecture

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary



**Record:** provides confidentiality and message

integrity

Handshake: authenticate entities, negotiate parameter

values

Change Cipher: change cipher for use in connection

**Alert:** alert peer entity of status/warning/error

ITS335

Web Security

Browsing

Applications

**HTTPS** 

Certificates

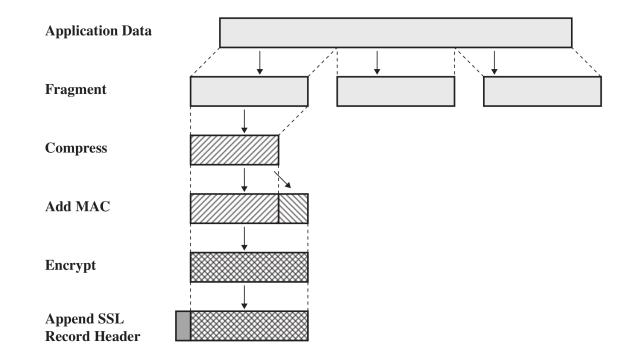
Summary

#### **Connections and Sessions**

- ► SSL connection corresponds with TCP connection
  - ► Client and server may have multiple connections
- ► SSL session is association between client and server
  - Session created with Handshake protocol
  - ► Multiple connections can be associated with one session
  - Security parameters for session can be shared for connections
- ► State information is stored after Handshake protocol
  - ► Session: ID, certificate, compression, cipher spec, master secret, . . .
  - ► Connection: random values, encrypt keys, MAC secrets, IV, sequence numbers, . . .

Web Security

## **SSL** Record Protocol Operation


Browsing

Applications

**HTTPS** 

Certificates

Summary



19

ITS335

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

#### **SSL Handshake Protocol**

- ► Allow client and server to authenticate each other
- Negotiate encryption and MAC algorithms, exchange keys
  - ► Key Exchange: RSA, Diffie-Hellman
  - ► MAC: HMAC using SHA or MD5
  - ► Encryption: RC4, RC2, DES, 3DES, IDEA, AES
- ► Multiple phases:
  - 1. Establish security capabilities: client proposes algorithms, server selects one
  - 2. Server authentication and key exchange
  - 3. Client authentication and key exchange
  - 4. Finish setting up connection

Contents

Web Security

Browsing

Applications

Web Browsing

**HTTPS** 

Certificates

Summary

Web Applications

Confidential Web Communications with HTTPS

#### **Digital Certificates**

**Summary** 

**ITS335** 

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

## Authentication and Encryption in Web **Browsing**

- ▶ Browser and server do not have pre-shared secrets
- ► Use public key cryptography to securely exchange secret key
  - ► RSA/DSA
  - ► Diffie-Hellman key exchange
  - ► Elliptic curve cryptography
- ▶ Once a secret key is exchanged, use symmetric key encryption
  - ► AES, RC4, 3DES, ...
- ► E.g. with RSA: if a server sends browser its RSA public key, how does browser know it is indeed RSA public key of server?
  - ► Get a trusted third party to confirm it is the servers RSA public key

Web Security

**Digital Certificates** 

Browsing

Applications

HTTPS

Certificates

Summary

#### **Step 1: Server Obtains Digital Certificate**

- ▶ Server (owner) creates key pair:  $(PU_s, PR_s)$
- ▶ Server confirms identity,  $ID_s$ , with trusted third party called Certificate Authority
- ► CA issues server with a digital certificate by signing relevant info:

$$C_s = (ID_s||PU_s||T, E(PR_{CA}, H(ID_s||PU_s||T))$$

- ► A timestamp, *T*, can be used to determine how long the certificate is valid
- ► X.509 specifies standard format of certificates

ITS335

Web Security

Browsing

Applications

HTTPS

Certificates

Summary

## **Digital Certificates**

## **Step 2: Server Sends Digitial Certificate to Browser**

- ▶ When browser initiates communications with server, server responds with  $C_s$
- ► Browser verifies signature using *PU<sub>CA</sub>* 
  - lacktriangle Assumes browser already knows and trusts  $PU_{CA}$
  - ► *PU<sub>CA</sub>* is stored in self-signed certificate:

$$C_{CA} = (ID_{CA}||PU_{CA}||T, \mathbb{E}(PR_{CA}, \mathbb{H}(ID_{CA}||PU_{CA}||T))$$

ightharpoonup Once verified, browser can choose secret value and send it encrypted using  $PU_s$  to server

Web Security

X.509 Certificates

Browsing

Applications

**HTTPS** 

Certificates

Summary

- X.509 certificate format includes:
  - ► Version of X.509 certificate
  - Serial number unique to the issuer (CA)
  - Signature algorithm
  - ► Issuer's name and unique identifier
  - ► Period of validity (start time, end time)
  - ► Subject's name and unique identifier
  - Subject's public key information: algorithm, parameters, key
  - ► Signature
- ► Certificates may be revoked before expiry
  - ► CA signs a Certificate Revocation List (CRL), which is publicly available

25

ITS335

Web Security

Browsing

Applications

HTTPS

Certificates

Summary

## Digital Certificates in Practice

#### How does a server obtain a certificate?

- ► Prove identity to CA by:
  - ▶ Domain validation
  - ► Extended validation
- ► Free and commercial services

#### How does browser obtain CA certificate?

- ► Pre-loaded into browsers
- ► Hierarchy of certificates is supported

#### What if CA certificate is not in browser?

► Browsers commonly present warning to user

Web Security

**Security Issues with Digital Certificates** 

Browsing

Applications

**HTTPS** 

Certificates

Summary

► Identity verification of server (owners)

- ► Security of CA private key
- ► Pre-loaded certificates by browser publisher
- ► Response when invalid certificate received
- ► Algorithms used in certificates should be strong

27

**ITS335** 

**Contents** Web Security

Browsing

Applications

Web Browsing

**HTTPS** 

Certificates

Summary

**Web Applications** 

Confidential Web Communications with HTTPS

**Digital Certificates** 

#### **Summary**

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

### **Key Points**

- ▶ Web browsing uses HTTP over TCP
- ► Secure web browsing inserts SSL in between HTTP and TCP: HTTPS
- ► Secret key exchange between browser and server using public key crypto
- ► For browser to trust server public key, must be signed by trusted third party (certificate authority)
- ► X.509 digital certificates used in web browsing, email and many networked applications

29

**ITS335** 

Web Security

Browsing

Applications

**HTTPS** 

Certificates

Summary

## **Security Issues**

- ► Digital certificates rely on trustworthiness of certificate authorities
- ► Also rely on action by users: response with invalid certificate received; trusting browser CA list
- ► Man-in-the-middle interception/modification attacks on web browsing are easy if certificates are compromised

## **Areas To Explore**

Web Security

Browsing

Applications

HTTPS

Certificates

Summary

► Public key distribution methods

- ► PGP and GPG for email
- ► Securing web applications, OWASP