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Server Handling Multiple Connections
• A server often receives connection requests from multiple clients (and even 

multiple requests from the one client)

• If we have just one server running, then would have to wait for server to 
finish processing data transfer from Client 1 before can process data 
transfer for Client 2

– Not practical, because most servers want to process data from clients in 
“parallel”

Server

Client 1

Client 2

Client 3

Client N



Multiple Copies of the Server Program
• The user starts multiple copies of the server program

• How many?
– Not enough: clients will try to connection, but connections will be 

refused
– Too many: Very inefficient (use memory, CPU) if no requests from

clients



Multiple Dynamic Copies of Server Process

• The user starts a single Server program (called the Parent process)
• The Parent automatically starts new copies of the Server process

whenever a Client request is received (called a Child process)
– When the Client finishes the connection, the Child process ends
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Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();         

if (pid < 0)             
error("ERROR on fork");

if (pid == 0)  {             
close(S);             
dostuff(newS);             
exit(0);}

else 

close(newS);
}

fork() creates an exact copy of this process,
including current values of variables

fork() returns 0 for the newly created Child
process

fork() returns the current process ID (not 0) for 
the Parent process



Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();         

if (pid < 0)             
error("ERROR on fork");

if (pid == 0)  {             
close(S);             
dostuff(newS);             
exit(0);}

else 

close(newS);
}

When accept() is called, it blocks until a TCP
connection setup is complete

Child Process
- Close the old socket (S)
- Process the request using new socket (newS)
- Exit (stop the Child process)

If TCP connection is successful, accept() creates
a new socket, and returns its identifier (newS)



Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();         

if (pid < 0)             
error("ERROR on fork");

if (pid == 0)  {             
close(S);             
dostuff(newS);             
exit(0);}

else 

close(newS);
}

When accept() is called, it blocks until a TCP
connection setup is complete

Parent Process
- Close the new socket (newS)
- Repeat the while(1) loop (e.g. wait for new TCP

connection)

If TCP connection is successful, accept() creates
a new socket, and returns its identifier (newS)



Implementation Details
• Our example uses fork() to create Child processes

– Parent server handles connection setup
– Child servers handles data transfer

• Children are created when a new connection request is accepted
• Children are destroyed when data transfer is complete

• fork() uses a separate process for children

• There are other implementation techniques (threads) that can be 
more efficient (but often complex) in some cases
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