
Sockets Programming

http://ict.siit.tu.ac.th/~steven/its332/

Server Handling Multiple Connections
• A server often receives connection requests from multiple clients (and even

multiple requests from the one client)

• If we have just one server running, then would have to wait for server to
finish processing data transfer from Client 1 before can process data
transfer for Client 2

– Not practical, because most servers want to process data from clients in
“parallel”

Server

Client 1

Client 2

Client 3

Client N

Multiple Copies of the Server Program
• The user starts multiple copies of the server program

• How many?
– Not enough: clients will try to connection, but connections will be

refused
– Too many: Very inefficient (use memory, CPU) if no requests from

clients

Multiple Dynamic Copies of Server Process

• The user starts a single Server program (called the Parent process)
• The Parent automatically starts new copies of the Server process

whenever a Client request is received (called a Child process)
– When the Client finishes the connection, the Child process ends

Client 1

Client 2

Client 3

Client N Server
(Child)

Server
(Parent)

Server
(Child)

Server
(Child)

Server
(Child)

Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();

if (pid < 0)
error("ERROR on fork");

if (pid == 0) {
close(S);
dostuff(newS);
exit(0);}

else

close(newS);
}

fork() creates an exact copy of this process,
including current values of variables

fork() returns 0 for the newly created Child
process

fork() returns the current process ID (not 0) for
the Parent process

Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();

if (pid < 0)
error("ERROR on fork");

if (pid == 0) {
close(S);
dostuff(newS);
exit(0);}

else

close(newS);
}

When accept() is called, it blocks until a TCP
connection setup is complete

Child Process
- Close the old socket (S)
- Process the request using new socket (newS)
- Exit (stop the Child process)

If TCP connection is successful, accept() creates
a new socket, and returns its identifier (newS)

Example of Parent/Child Processes
// User starts Server process

S = socket (…);
…

while (1) {
newS=accept(S,&cli,&clilen);
pid = fork();

if (pid < 0)
error("ERROR on fork");

if (pid == 0) {
close(S);
dostuff(newS);
exit(0);}

else

close(newS);
}

When accept() is called, it blocks until a TCP
connection setup is complete

Parent Process
- Close the new socket (newS)
- Repeat the while(1) loop (e.g. wait for new TCP

connection)

If TCP connection is successful, accept() creates
a new socket, and returns its identifier (newS)

Implementation Details
• Our example uses fork() to create Child processes

– Parent server handles connection setup
– Child servers handles data transfer

• Children are created when a new connection request is accepted
• Children are destroyed when data transfer is complete

• fork() uses a separate process for children

• There are other implementation techniques (threads) that can be
more efficient (but often complex) in some cases

	Sockets Programming
	Server Handling Multiple Connections
	Multiple Copies of the Server Program
	Multiple Dynamic Copies of Server Process
	Example of Parent/Child Processes
	Example of Parent/Child Processes
	Example of Parent/Child Processes
	Implementation Details

