
SIIT ITS 332

ITS 332 – Assignment

1 Tasks
This assignment requires you to develop your own client/server applications in Ubuntu Linux.
You have three tasks:

1. Develop a simple web server and command line based client that can retrieve pages from
the server.

2. Enhance the client and server in Part 1 to allow for password based authentication.

3. Enhance the client and server in Part 1 to allow a proxy server to be used.

You should complete the tasks in this order.

2 Deadline
The deadline for submission (via email – see Section 8) is:

• All sections: 9am Tuesday 16 February 2010

However you must demonstrate your solution at the end of the labs in Week 13 (2, 4, 5 Feb) and
Week 14 (9, 11, 12 Feb).

You will have two lab classes to complete the assignment. It is expected during these 6 hours you
can at least complete Part 1 and Part 2. The remaining must be completed in your own time
before the deadline.

3 Plagiarism
Plagiarism includes: copying other peoples code; showing your code or significant part of it to
other people; and telling other people what the code should be.

This is an individual assignment, and plagiarism will be heavily penalised. You must do the
design and implementation on your own.

4 Marking
The allocation of marks to tasks is as follows:

• Part 1: 40%

• Part 2: 40%

• Part 3: 20%

Within each part, you will receive marks for:

• Successful tests: we will run several tests with your programs – they should produce the
expected results. The tests will be run automatically, so it is important that you follow the
instructions in this assignment – for example, naming of files, command line arguments,
log output and message formats.

• Correct implementation: we will check your code to see if you have implemented the
applications correctly.

• Well written code: we will check your code to see if you have structured your code well,
including comments, appropriate use of constants and variable names, and good design.

Client/Server Applications 1

SIIT ITS 332

5 Part 1 – Simple Web Server and Client

5.1 Task

Create a simple web server and a command line web page retriever.

The command line web page retriever must take three parameters:
• web server (hostname or IP address)
• port number of web server
• requested page

For example, if the web server is running on port 50001 on 192.168.1.3, the client can be run
as:

./client 192.168.1.3 50001 index.html

The client only requests a single page, and then exits. The output of the client may be:
1. If the requested page exists on the web server, then the client must save the received

HTML as the requested file. In the above example, the received HTML (but not the 200
OK status code) would be saved as index.html. The client must also print a message to the
screen:

index.html retrieved and saved

Then the client exits.
2. If the requested page does not exist on the web server, then the client prints a message to

the screen:

index.html not found on server

Then the client exits.

The requests from the client will be for HTML web pages, and will follow a basic HTTP GET
Request format:

GET url HTTP/1.1 server

where url is a file in the same directory as the web server, and server is the IP address (or host
name/domain name) of the web server. We will not test the ability to handle directories (except in
Part 2). Examples of valid values of url are:

index.html

file.html

hello.txt

Examples of invalid url (that is, values that we will NOT test, and hence you do not have to
support) are:

/index.html

/directory/file.html

hello.jpg

The web server should receive requests from your client and send responses back.

The web server must take one parameter:
1. Port number of web server

For example, if listening on port 50001:

./server 50001

Client/Server Applications 2

SIIT ITS 332

The responses will include the HTTP Status Code message followed by the actual HTML web
page (if it exists). There can be two different responses from the web server.

1. If the requested file exists (e.g. index.html), then the web server response will be of the
format:

HTTP/1.1 200 OK

HTML of requested page

where the actual HTML of the requested page is included.

2. If the requested file does not exist, then the web server response will be of the format:

HTTP/1.1 404 File Not Found

The server must be able to handle connections from multiple clients, and will run continuously
(that is, until the user hits Control-C).

The server must produce a log of events, and print them to the screen. The format of the server
log is, for each request:

Time: <date and time of request>

Client: <IP address of requesting client>

Request: <the full HTTP request>

Response: <HTTP status code in response>

The trace later shows an example output. Note that the Request must include the entire request,
whereas the Response only include the status code, e.g. “200 OK” or “404 File Not Found” - the
HTML page is not included in the log.

5.2 Assumptions

To make your program simple (and hence your life easier), you can (and should) make the follow
assumptions:

1. The maximum request size will be 256 bytes/characters.
2. The maximum response size (status code and HTML page) will be 4000 bytes/characters.
3. The client will only send a correctly formatted GET request (e.g. GET url HTTP/1.1

server).
4. The server will only send a correctly formatted response: either HTTP/1.1 200 OK

followed by the web page; or HTTP/1.1 404 File Not Found.
5. The username will not be longer than 10 characters.
6. The password will not be longer than 10 characters.

The above assumptions mean you do not have to test for these conditions. For example, you do
not have to test that the response is less than 4000 bytes – you can assume it always will be. (And
we will not run tests that exceed these limits, or break these assumptions).

These assumptions also apply for Part 2 and Part 3.

Client/Server Applications 3

SIIT ITS 332

5.3 Example Messages

The following figure shows an example of the messages sent. The first two messages are the
result of the client requesting a page on the server. The second two messages are a result of the
client requesting a page that does not exist on the server. Note that this example would be
produced by running the client two times, but the server only once:

./server 50001

./client 192.168.1.2 5001 index.html

./client 192.168.1.2 5001 nopage.html

Client
192.168.1.1

Server
192.168.1.2

GET index.html HTTP/1.1 192.168.1.2

HTTP/1.1 200 OK
<html>
….
</html>

GET nopage.html HTTP/1.1 192.168.1.2

HTTP/1.1 404 File Not Found

Figure 1

5.4 File Names

You must name your applications as follows:

• client.c – source code for client

• server.c – source code for server

5.5 Running and Testing the Client and Server

In order to make your testing, and our testing (and marking) easier, you must follow the
following instructions for developing your code.

You must create a directory using your ID number (in the following example, assume mine is
123456789 and I am in the /home/network/ directory). Create the following directory structure:

Client/Server Applications 4

SIIT ITS 332

/home/network/123456789/clientdir/

/home/network/123456789/serverdir/

clientdir/ should contain the source and executable for the client application, and serverdir/
should contain the source and executable for the server, as well as the test HTML pages.

You may include other test files, like page.html and hello.txt in serverdir/ – and these of
course will be downloaded to the clientdir/ when you run your client.

When we test your system, we will execute your client and server in the above directories. We
may also test your client with our server, and test our client with your server.

5.6 Example Trace

The following shows actual output from running the client and server we developed. You should
obtain the same output from running your client and server (although the directories, file names
and times will be different). When we test and mark your assignment, we will be checking that
you get similar output.

Trace from client (running on chilli, 192.168.1.2):
sgordon@chilli:~/123456789/clientdir$ ls -l
total 44
-rwx------ 1 sgordon sgordon 10607 2007-02-03 17:26 client
-rwx------ 1 sgordon sgordon 4291 2007-02-03 17:28 client.c
-rwx------ 1 sgordon sgordon 11225 2007-02-03 17:48 client_secure
-rwx------ 1 sgordon sgordon 5486 2007-02-03 17:48 client_secure.c
drwx------ 2 sgordon sgordon 4096 2007-02-03 17:52 protected
sgordon@chilli:~/123456789/clientdir$./client 192.168.1.3 50001 index.html
index.html retrieved and saved
sgordon@chilli:~/123456789/clientdir$./client 192.168.1.3 50001 page1.html
page1.html retrieved and saved
sgordon@chilli:~/123456789/clientdir$./client 192.168.1.3 50001 page2.html
page2.html not found on server
sgordon@chilli:~/123456789/clientdir$ ls -l
total 52
-rwx------ 1 sgordon sgordon 10607 2007-02-03 17:26 client
-rwx------ 1 sgordon sgordon 4291 2007-02-03 17:28 client.c
-rwx------ 1 sgordon sgordon 11225 2007-02-03 17:48 client_secure
-rwx------ 1 sgordon sgordon 5486 2007-02-03 17:48 client_secure.c
-rw------- 1 sgordon sgordon 1103 2007-02-03 17:54 index.html
-rw------- 1 sgordon sgordon 1103 2007-02-03 17:54 page1.html
drwx------ 2 sgordon sgordon 4096 2007-02-03 17:52 protected
sgordon@chilli:~/123456789/clientdir$

Trace from server (running on basil, 192.168.1.3):
sgordon@basil:~/123456789/serverdir$ ls -l
total 52
-rw------- 1 sgordon sgordon 1103 2007-02-03 13:05 index.html
-rw------- 1 sgordon sgordon 1103 2007-02-03 13:05 page1.html
drwxr-xr-x 2 sgordon sgordon 4096 2007-02-03 17:06 protected
-rwxr-xr-x 1 sgordon sgordon 10771 2007-02-03 17:46 server
-rw------- 1 sgordon sgordon 4758 2007-02-03 17:45 server.c
-rwxr-xr-x 1 sgordon sgordon 11290 2007-02-03 17:46 server_secure
-rw------- 1 sgordon sgordon 6210 2007-02-03 17:45 server_secure.c
sgordon@basil:~/123456789/serverdir$./server 50001
Time: Sat Feb 3 17:48:24 2007
Client: 192.168.1.2
Request: GET index.html HTTP/1.1 192.168.1.3

Client/Server Applications 5

mailto:sgordon@chilli

SIIT ITS 332

Response: 200 OK

Time: Sat Feb 3 17:48:32 2007
Client: 192.168.1.2
Request: GET page1.html HTTP/1.1 192.168.1.3
Response: 200 OK

Time: Sat Feb 3 17:48:35 2007
Client: 192.168.1.2
Request: GET page2.html HTTP/1.1 192.168.1.3
Response: 404 File Not Found

sgordon@basil:~/123456789/serverdir$

6 Part 2 – Authenticated File Access

6.1 Task

Modify your web server and client to allow the server to offer password protected files (similar to
HTTP Authentication).

Assume the web server stores password protected files in the subdirectory “protected”. A
request for the client for a URL protected/file.html will force the server to return a message
saying “401 Not Authorized”, so the client will then send the same request but with the
username and password attached. The client should create a new TCP connection for each request
sent.

The message formats are now:

Initial request from client:

GET url HTTP/1.1 server

Response if requesting file in protected/ directory:

HTTP/1.1 401 Not Authorized

Follow up request from client of a 401 Not Authorized was received:

GET url HTTP/1.1 server username password

Response from server if username/password correct and file sent.

HTTP/1.1 200 OK

The client does not have to cache username/password pairs. The command line interface to the
client is the same as Part 1. However, if the url is for a file in the protected/ directory, then
after receiving a 401 Not Authorized from the server, the client must prompt the user for a
username and password, and then send the request to the server again.

You may allow multiple username/password pairs at the server, but you must allow at least the
username siit and password test. (We will use that in testing your system).

If the username and password are incorrect, then the server will respond again with a HTTP/1.1
401 Not Authorized message, and the client will exit (showing a message “Incorrect
username/password for index.html”).

If the url is not for a file in the protected directory, then the client will perform the same as in
Part 1.

Client/Server Applications 6

SIIT ITS 332

If the url is for a file in the protected directory, but the file does not exist, the server returns a
404 message (instead of a 401 message).

6.2 Example Messages

Figure 2 shows the result of requesting a page in the protected directory.

Client
192.168.1.1

Server
192.168.1.2

GET protected/index.html HTTP/1.1 192.168.1.2

HTTP/1.1 200 OK
<html>
….
</html>

HTTP/1.1 401 Not Authorized

GET protected/index.html HTTP/1.1 192.168.1.2 siit test

Figure 2

Figure 3 shows an example of the user entering an incorrect password.

Client
192.168.1.1

Server
192.168.1.2

GET protected/index.html HTTP/1.1 192.168.1.2

HTTP/1.1 401 Not Authorized

GET protected/index.html HTTP/1.1 192.168.1.2 siit bad

HTTP/1.1 401 Not Authorized

Figure 3

Figure 4 shows an example of the user requesting a page that does not exist in the protected
directory.

Client/Server Applications 7

SIIT ITS 332

Client
192.168.1.1

Server
192.168.1.2

GET protected/nopage.html HTTP/1.1 192.168.1.2

HTTP/1.1 404 File Not Found

Figure 4

6.3 File Names

You must name your applications as follows:

• client_secure.c – source code for client

• server_secure.c – source code for server

6.4 Example Traces

Client Trace
sgordon@chilli:~/123456789/clientdir$ ls -l
total 44
-rwx------ 1 sgordon sgordon 10607 2007-02-03 17:26 client
-rwx------ 1 sgordon sgordon 4291 2007-02-03 17:28 client.c
-rwx------ 1 sgordon sgordon 11225 2007-02-03 17:48 client_secure
-rwx------ 1 sgordon sgordon 5486 2007-02-03 17:48 client_secure.c
drwx------ 2 sgordon sgordon 4096 2007-02-03 17:52 protected
sgordon@chilli:~/123456789/clientdir$ ls -l protected/
total 0
sgordon@chilli:~/123456789/clientdir$./client_secure 192.168.1.3 50001
protected/index.html
Username: siit
Password: test
protected/index.html retrieved and saved
sgordon@chilli:~/123456789/clientdir$ ls -l protected/
total 4
-rw------- 1 sgordon sgordon 1103 2007-02-03 18:02 index.html
sgordon@chilli:~/123456789/clientdir$./client_secure 192.168.1.3 50001
protected/index.html
Username: john
Password: test
Incorrect username/password for protected/index.html
sgordon@chilli:~/123456789/clientdir$./client_secure 192.168.1.3 50001
protected/test.html
protected/test.html not found on server
sgordon@chilli:~/123456789/clientdir$./client_secure 192.168.1.3 50001
index.html index.html retrieved and saved
sgordon@chilli:~/123456789/clientdir$

Server Trace

Client/Server Applications 8

SIIT ITS 332

sgordon@basil:~/123456789/serverdir$ ls -l
total 52
-rw------- 1 sgordon sgordon 1103 2007-02-03 13:05 index.html
-rw------- 1 sgordon sgordon 1103 2007-02-03 13:05 page1.html
drwxr-xr-x 2 sgordon sgordon 4096 2007-02-03 17:06 protected
-rwxr-xr-x 1 sgordon sgordon 10771 2007-02-03 17:46 server
-rw------- 1 sgordon sgordon 4758 2007-02-03 17:45 server.c
-rwxr-xr-x 1 sgordon sgordon 11290 2007-02-03 17:46 server_secure
-rw------- 1 sgordon sgordon 6210 2007-02-03 17:45 server_secure.c
sgordon@basil:~/123456789/serverdir$ ls -l protected/
total 4
-rw------- 1 sgordon sgordon 1103 2007-02-03 17:06 index.html
sgordon@basil:~/123456789/serverdir$./server_secure 50001
Time: Sat Feb 3 17:55:53 2007
Client: 192.168.1.2
Request: GET protected/index.html HTTP/1.1 192.168.1.3
Response: 401 Not Authorized

Time: Sat Feb 3 17:55:58 2007
Client: 192.168.1.2
Request: GET protected/index.html HTTP/1.1 192.168.1.3 siit test
Response: 200 OK

Time: Sat Feb 3 17:56:11 2007
Client: 192.168.1.2
Request: GET protected/index.html HTTP/1.1 192.168.1.3
Response: 401 Not Authorized

Time: Sat Feb 3 17:56:16 2007
Client: 192.168.1.2
Request: GET protected/index.html HTTP/1.1 192.168.1.3 john test
Response: 401 Not Authorized

Time: Sat Feb 3 17:56:32 2007
Client: 192.168.1.2
Request: GET protected/test.html HTTP/1.1 192.168.1.3
Response: 404 File Not Found

Time: Sat Feb 3 17:56:42 2007
Client: 192.168.1.2
Request: GET index.html HTTP/1.1 192.168.1.3
Response: 200 OK

sgordon@basil:~/123456789/serverdir$

7 Part 3 – Create a Proxy Server

7.1 Task

Create a proxy server, that will intercept and forward requests from a client to real web server. A
proxy is often used to provide security and performance enhancements to web access for users.
When a client sends a request for a web page, it goes to the proxy. The proxy then sends the
request to the real web server. The response from the real web server is sent to the proxy, and
then the proxy forwards the response to the client. This allows the proxy to control what requests
are allowed and also cache responses.

Client/Server Applications 9

mailto:sgordon@basil

SIIT ITS 332

In this task you have to create the proxy server, which forwards requests and responses between
client and web server.

You should copy your original client (from Part 1) to client_proxy.c and modify it to allow
extra command line arguments specifying the proxy:

./client_proxy 192.168.1.2 192.168.1.3 50001 index.html

where the real web server is running on 192.168.1.2 and the proxy server on 192.168.1.3, port
50001. Note that the client no longer specifies the port number of the real web server – it is
assumed that it is a well-known port number.

The server should be the same as the server used in Part 1 (you do not need to modify it).

You should create a new directory for the proxy: proxydir/

The proxy should receive GET requests from the client and then send them (unmodified) to the
real server. The response from the real server will be sent by the proxy (unmodified) back to the
client.

./proxy 50001 50000

where the proxy listens on port 50001 and the well-known port number of the real server is
50000.

The proxy does not have to cache (save) pages that it receives from the real web server.

The proxy should keep a log in the same format as a real server, but with an additional line which
is printed when the proxy forwards a response to the client:

Proxy: response sent to client

7.2 Example Messages

Figure 5 shows an example a client requesting a page on the server. The request (and response)
go via the proxy.

Client
192.168.1.1

Server
192.168.1.2

GET index.html HTTP/1.1 192 .168.1.2

HTTP/1.1 200 OK
<html>
….
</html>

Proxy
192.168.1.3

GET index.html HTTP/1.1 192 .168 .1.2

HTTP/1.1 200 OK
<html>
….
</html>

Figure 5

Client/Server Applications 10

SIIT ITS 332

7.3 File Names

You must name your applications as follows:

• client_proxy.c – source code for client

• proxy.c – source code for server

Note that the server will be the same as that used in Part 1.

7.4 Example Traces

Client Trace
sgordon@chilli:~/123456789/clientdir$./client_proxy localhost chilli 50001
index.html
index.html retrieved and saved
sgordon@chilli:~/123456789/clientdir$

Proxy Trace
sgordon@chilli:~/123456789/proxydir$./proxy 50001 50000
Time: Sun Feb 4 10:21:56 2007
Client: 127.0.0.1
Request: GET index.html HTTP/1.1 localhost
Proxy: response sent to client

sgordon@chilli:~/123456789/proxydir$

Server Trace
sgordon@chilli:~/123456789/serverdir$./server 50000
Time: Sun Feb 4 10:21:56 2007
Client: 127.0.0.1
Request: GET index.html HTTP/1.1 localhost
Response: 200 OK

sgordon@chilli:~/123456789/serverdir$

8 Submission
You should submit all source code (.c) files:
/home/network/123456789/clientdir/

client.c
client_secure.c
client_proxy.c

/home/network/123456789/serverdir/
server.c
server_secure.c

/home/network/123456789/proxydir/
proxy.c

You should archive all files using the following commands:

cd /home/network/

tar czvf its332-123456789.tgz 123456789/*

Client/Server Applications 11

mailto:sgordon@chilli
mailto:sgordon@chilli

SIIT ITS 332

The result will be a single file in /home/network called its332-123456789.tgz. You can test
that your archive worked by unpacking it using:

cd /home/network

mkdir test

mv its332-123456789.tgz test

cd test

tar xzvf its332-123456789.tgz

Attach the archive file to an email, and send the email to steve@siit.tu.ac.th with the subject:

ITS332 Assignment 123456789

Of course replace 123456789 with your ID number.

Client/Server Applications 12

mailto:steve@siit.tu.ac.th

	1 Tasks
	2 Deadline
	3 Plagiarism
	4 Marking
	5 Part 1 – Simple Web Server and Client
	5.1 Task
	5.2 Assumptions
	5.3 Example Messages
	5.4 File Names
	5.5 Running and Testing the Client and Server
	5.6 Example Trace

	6 Part 2 – Authenticated File Access
	6.1 Task
	6.2 Example Messages
	6.3 File Names
	6.4 Example Traces

	7 Part 3 – Create a Proxy Server
	7.1 Task
	7.2 Example Messages
	7.3 File Names
	7.4 Example Traces

	8 Submission

