Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Signal Encoding Techniques

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 3 August 2015 ITS323Y15S1L04, Steve/Courses/2015/s1/its323/lectures/signal-encoding-techniques.tex, r3920

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Contents

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

イロト 不得 トイヨト イヨト

э

Signal Encoding

Introduction

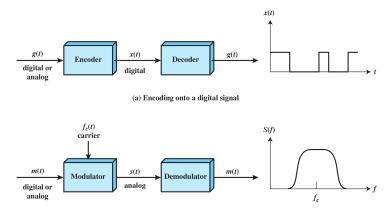
Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Signal Encoding Techniques


- Signals transmitted chosen to optimize use of transmission medium
 - E.g. conserve bandwidth, minimize errors
- Digital signaling: digital or analog data encoded into digital signal
- Analog signaling: digital or analog data transmitted by analog carrier signal using modulation

- Baseband signal is the input data signal
- Carrier signal has frequency f_{carrier}
- Modulated signal is output

ITS323/CSS331 Signal Encoding

Introduction

Encoding and Modulation Techniques

(b) Modulation onto an analog signal

(日)、

э

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Reasons for Using Different Techniques

Digital data, digital signal: Equipment less complex/expensive than digital-to-analog modulation equipment

Analog data, digital signal: Permits use of digital transmission equipment

Digital data, analog signal: Some media only propagate analog signals, e.g. optical fibre, wireless

Analog data, analog signal: Some analog data can easily be transmitted as baseband signals, e.g. voice; enables multiple signals at different positions in spectrum to share transmission media

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Contents

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

イロト 不得 トイヨト イヨト

э

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

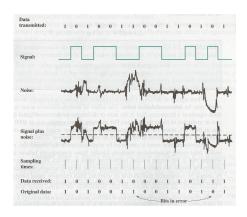
Digital Data, Digital Signals

- Digital signal: sequence of discrete voltage pulses
- Each pulse is a signal element
- Binary data transmitted by encoding each bit (data element) into signal elements
 - E.g. binary 1 represented by lower voltage level, binary 0 for higher level

- Data rate = data elements or bits per second
- Signaling or modulation rate = signal elements per second (baud)

ITS323/CSS331 Signal Encoding

Receiver Interpreting Incoming Signal



Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

- Important factors for successful reception: SNR, data rate, bandwidth
 - Increase in data rate increases bit error rate (BER)
 - Increase in SNR decreases BER
 - Increase in bandwidth allows increase in data rate

ヘロン 人間と ヘヨン ヘヨン

Also encoding scheme . . .

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

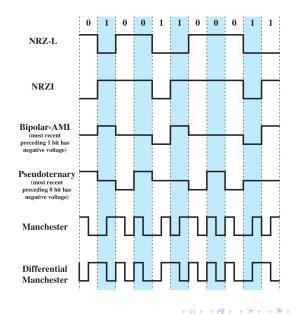
Definition of Digital Signal Encoding Formats

Nonreturn to Zero-Level (NRZ-L)			
0 = high level			
1 = low level			
Nonreturn to Zero Inverted (NRZI)			
0 = no transition at beginning of interval (one bit time)			
1 = transition at beginning of interval			
Bipolar-AMI			
0 = no line signal			
1 = positive or negative level, alternating for successive ones			
Pseudoternary			
0 = positive or negative level, alternating for successive zeros			
1 = no line signal			
Manchester			
0 = transition from high to low in middle of interval			
1 = transition from low to high in middle of interval			
Differential Manchester			
Always a transition in middle of interval			
0 = transition at beginning of interval			
1 = no transition at beginning of interval			
B8ZS			
Same as bipolar AMI, except that any string of eight zeros is replaced by a string with two			
code violations			
uppa			
HDB3			
Same as bipolar AMI, except that any string of four zeros is replaced by a string with one code violation			
code violation			

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

ITS323/CSS331 Signal Encoding

Digital Signal Encoding Formats


Introduction

Digital Data, Digital Signals

Digital Data, Analog Signal

Analog Data, Digital Signals

Analog Data, Analog Signals

996

æ

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Comparing Different Encoding Schemes

Signal Spectrum

- Desire no high frequency components so less bandwidth is required
- Desire no dc component so ac coupling can be used (reduces bit error rate)
- Concentrate trasmitted power in middle of bandwidth

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Clocking and Synchronization

 Transmitted signal can be used by receiver to synchronise bit timing

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Comparing Different Encoding Schemes

Error Detection

 Receiver can detect some bit errors from the received signal

Signal Interference

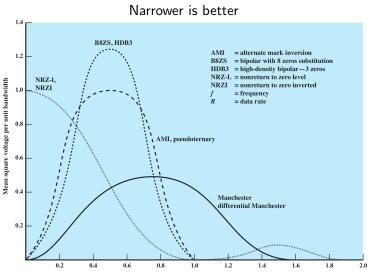
 Provide good performance (few bit errors) in presence of noise

Cost and Complexity

Desire smaller signaling rate to achieve a given data rate

Signal Encoding

Introduction


Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Spectral Density of Various Signal Encoding Schemes

Normalized frequency (f/R)

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Improving on NRZ

Multilevel Binary Schemes

- Bipolar AMI, Pseudoternary
- Use more than two signal levels
- No dc component, simple error detection, no loss of synchronization (in some cases), small bandwidth needed
- Requires more transmit power for same level of BER as two-level schemes

Biphase Schemes

- Manchester, differential Manchester
- More than 1 transition per bit
- Similar features to multilevel schemes, but larger bandwidth required

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

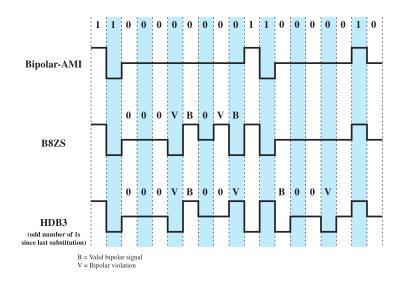
Improving Synchronization

- In Bipolar AMI a long sequence of 0's makes it difficult for the receiver to synchronize
- Solution: if long sequence of same bit, replace with special sequence of bits
- B8ZS (Bipolar with 8-zeros substitution)
 - ▶ If 8 0's and last pulse was positive, replace 8 0's with 000 + -0 +
 - ▶ If 8 0's and last pulse was negative, replace 8 0's with 000 +0 + -
- HDB3 (High density bipolar 3-zeros)

	Number of Bipolar Pulses (ones) since Last Substitution	
Polarity of Preceding Pulse	Odd	Even
-	000-	+00+
+	000+	-00-

ITS323/CSS331 Signal Encoding

Encoding Rules for B8ZS and HDB3


Introduction

Digital Data, Digital Signals

Digital Data, Analog Signal

Analog Data, Digital Signals

Analog Data, Analog Signals

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Example Technologies using Encoding Schemes

▶ NRZ/NRZI: RS-232, HDLC, USB, ...

- Manchester: Ethernet, Token Ring, ...
- Multilevel Binary: US T-carrier and European E-carrier telecommunication systems

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals Contents

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

イロト 不得 トイヨト イヨト

э

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

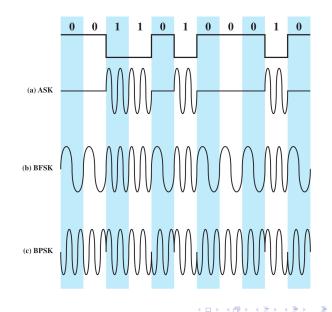
Analog Data, Analog Signals

Digital Data, Analog Signals

- Transmit digital data over media that only support analog signals, e.g. telephone network, microwave systems
 - Telephone network designed to transmit signals in voice-frequency (300 to 3400 Hz)
 - Modems (modulator-demodulator) convert digital data to signals in this frequency range
- 3 basic modulation techniques:
 - 1. Amplitude Shift Keying (ASK)
 - 2. Phase Shift Keying (PSK)
 - 3. Frequency Shift Keying (FSK)
- Resulting signal occupies bandwidth centred on carrier frequency

Signal Encoding

Introduction


Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Modulation of Analog Signals for Digital Data

596

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Comparing the Shift Keying Schemes

Amplitude Shift Keying

- Inefficient modulation technique
- ▶ Used on voice lines < 1200 bps and optical fibre

Frequency Shift Keying

- Used on voice lines, coaxial cable, HF radio systems
- Extended with *M* frequencies: improve efficiency, higher error rate

Phase Shift Keying

- Used in wireless transmission systems
- Extended with M phases, e.g. QPSK (M = 4),
- Combined with ASK: Quadrature Amplitude Modulation (QAM); used in ADSL and wireless systems

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Example Technologies using Shift Keying

- ASK: Optical fibre, RFID
- FSK: HF/shortwave radio, UHF/VHF radio comms, RFID
- PSK and QAM: mobile phones, Wi-Fi, cable modems, xDSL, DVB, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals Contents

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

イロト 不得 トイヨト イヨト

э

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

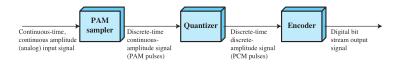
Analog Data, Analog Signals

Analog Data, Digital Signals

- Two options:
 - 1. Convert analog data to digital data; transmit digital data as digital signal (e.g. using NRZ)
 - 2. Convert analog data to digital data; modulate the data to transmit as analog signal (e.g. PSK)
- How to digitize analog data?
 - Codec converts analog to digital data, and recovers analog data from digital data
 - Consider two techniques used in codecs: Pulse Code Modulation and Delta Modulation

Signal Encoding

Introduction


Digital Data, Digital Signal

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Pulse Code Modulation

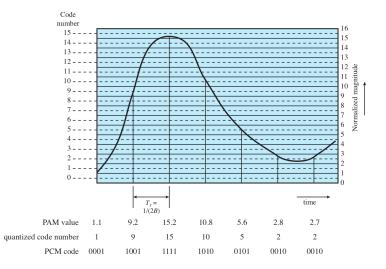
 Divide the normalised input magnitude into 2ⁿ different levels, with corresponding code numbers

- 2. Sample analog input every T_s seconds \rightarrow pulse amplitude modulation (PAM) value
- 3. Map PAM value to nearest code number
- 4. Convert code number to *n*-bit binary PCM code

See also "Pulse Code Modulation" handout

ITS323/CSS331 Signal Encoding

Pulse Code Modulation Example



Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Sampling Theorem

If a signal f(t) is sampled at regular intervals of time and at a rate higher than twice the highest signal frequency, then the samples contain all the information of the original signal

- Example: voice is between 0 and 4000 Hz; sampling at 8000 samples per second is sufficient to reproduce analog voice at receiver
- BUT ... quantizing the PAM values introduces error (or noise); each additional bit increases SNR by 6 dB

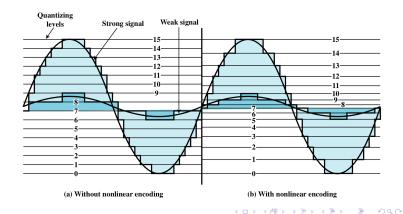
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Good voice reproduction can be achieved with 128 quantization levels (7-bit coding)

Signal Encoding

Introduction

Digital Data, Digital Signals


Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Improving PCM with Nonlinear Coding

- Linear spacing of quantization levels can result in poor reproduction of weak signals
- Non-linear encoding: more steps for low amplitude, less steps at high amplitude
- Can lead to significant improvement for voice

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

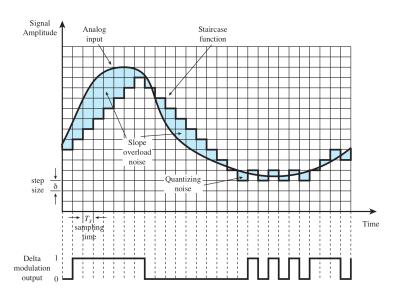
Delta Modulation

- Popular alternative to PCM
- Input analog data approximated by staircase function

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Moves up/down by one quantization level (δ) each sampling interval (T_s)
- If signal goes up, bit 1 is output; otherwise bit 0

Signal Encoding


Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

・ロト ・ 雪 ト ・ ヨ ト

æ

Example of Delta Modulation

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

Contents

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

イロト 不得 トイヨト イヨト

3

Signal Encoding

Introduction

Digital Data, Digital Signals

Digital Data, Analog Signals

Analog Data, Digital Signals

Analog Data, Analog Signals

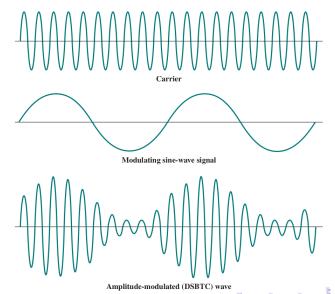
Modulating Signals

- Combine input signal, m(t), and carrier at frequency f_c to produce signal s(t) whose bandwidth is centered on f_c
- Why? If analog transmission systems
 - Digital data must be converteed to analog form (e.g. PSK, FSK)
 - Analog signals may need to be transmitted at higher frequency than analog data
 - Changing frequency of analog data allows for frequency division multiplexing (sending different analog data in one analog signal)

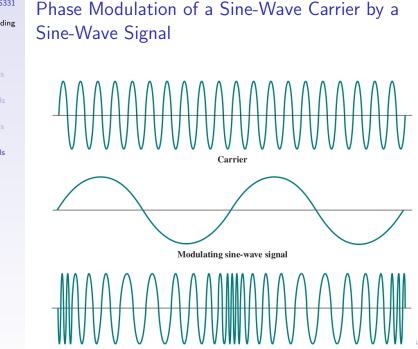
 Principal techniques: amplitude modulation (AM), frequency modulation (FM), phase modulation (PM)

Signal Encoding

Introduction


Digital Data, Digital Signals

Digital Data, Analog Signal


Analog Data, Digital Signals

Analog Data, Analog Signals

Amplitude Modulation of a Sine-Wave Carrier by a Sine-Wave Signal

~ ~ ~ ~

Signal Encoding

Introduction

Digital Data, Digital Signals

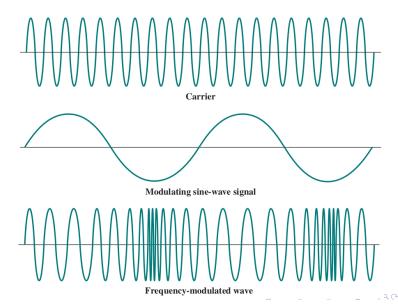
Digital Data, Analog Signal

Analog Data, Digital Signals

Analog Data, Analog Signals

Signal Encoding

Introduction


Digital Data, Digital Signals

Digital Data, Analog Signal

Analog Data, Digital Signals

Analog Data, Analog Signals

Frequency Modulation of a Sine-Wave Carrier by a Sine-Wave Signal

