Routing

Design

Strategies

Protocols

### Routing

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 13 October 2015 ITS323Y15S1L10, Steve/Courses/2015/s1/its323/lectures/routing.tex, r4135

1

ITS323/CSS331

### **Contents**

Routing

Design

Strategies

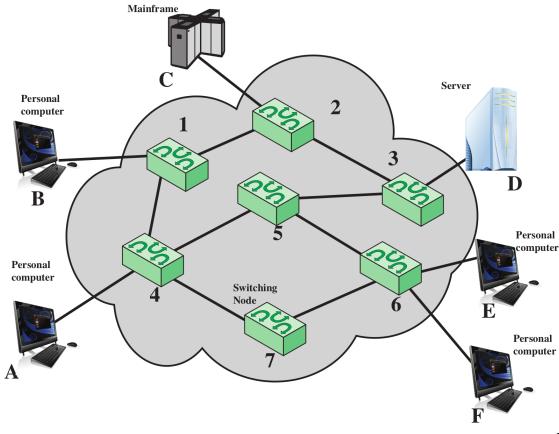
Protocols

**Routing in Switched Networks** 

**Routing Strategies** 

**Routing Protocols and Algorithms** 

Routing


Design

Strategies

Protocols

### **Routing in Switched Networks**

Which path or route to take from source to destination?



ITS323/CSS331

Routing

Design

Strategies

Protocols

## Routing in Switched Networks

- ► Routing is a key design issue in switched networks
- ► Question: What path (route) should be taken from source to destination?
- ► Answer: Choose the "best" path!
- ▶ What is "best", and how to choose it?
- ► Real networks may have 100's to 100,000+ nodes, and many possible paths
- Routing is needed in circuit-switched and packet-switched networks (we focus on packet-switched networks)

Routing

Design

Strategies

Protocols

### Requirements of Routing Algorithms

Correctness path must be from intended source to intended

destination

**Simplicity** easy/cheap to implement

Robustness still deliver in presence of errors or overload

Stability path changes should not be too frequent

**Optimality** choose best paths

Fairness ensure all stations obtain equal performance

**Efficiency** minimise the amount of processing and

transmission overhead

5

ITS323/CSS331

Routing

Design

Strategies

Protocols

### Routing Terminology

Link direct connection between two nodes

Path a way between two nodes, via one or more links

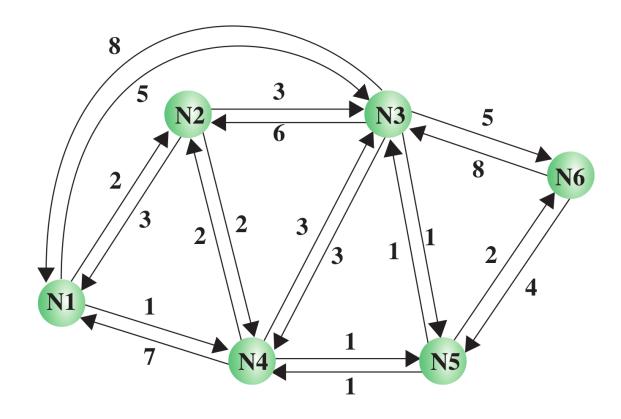
**Hop** to traverse a link

Neighbour a node at the other end of a link

**Cost** value assigned to link to indicate cost of using that link

**Topology** arrangement of nodes and links in a network

Least-cost routing is typically used: choose a path with least cost


**Example of Network Configuration** 

Routing

Design

Strategies

Protocols



7

#### ITS323/CSS331

Routing

#### Design

Strategies

Protocols

## **Elements of Routing Techniques**

- ▶ Which performance criteria are used to select a path?
- ► When is a path selected?
- ► Which nodes are responsible for selecting path?
- ▶ Which nodes provide information about network status?
  - ► topology, link costs, current usage
- ► How often is network status information updated?

### **Elements of Routing Techniques**

Routing

Design

Strategies

Protocols

Performance Criteria

Number of hops

Cost Delay Throughput

**Decision Time** 

Packet (datagram) Session (virtual circuit)

**Decision Place** 

Each node (distributed) Central node (centralized) Originating node (source) **Network Information Source** 

None

Local

Adjacent node Nodes along route

All nodes

**Network Information Update Timing** 

Continuous Periodic

Major load change Topology change

9

ITS323/CSS331

### **Contents**

Routing

Design

Strategies

Protocols

Routing in Switched Networks

### **Routing Strategies**

**Routing Protocols and Algorithms** 

Routing

Design

Strategies

Protocols

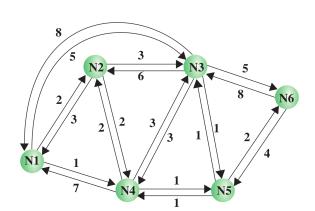
### **Strategy 1: Fixed Routing**

- ► Use a single permanent route for each source to destination pair
- ► Routes are determined using a least cost algorithm, e.g. Dijkstra, Bellman-Ford algorithms
- Route is fixed
  - At least until a change in network topology (node/link added/deleted)
  - ► Hence cannot respond to traffic changes (e.g. overload in one portion of the network)
- ► No difference between routing for datagrams and virtual circuits
- ► Advantage is simplicity
  - ► You assign the routes at the start, and then nothing to do
- ► Disadvantage is lack of flexibility
  - ► When the network is operating, changes in load may mean better routes than initially selected should be used

11

ITS323/CSS331

Routing


Design

Strategies

Protocols

### Fixed Routing Example

How many least-cost paths are there? What are they?



Routing

Design

Strategies

Protocols

### **Routing Tables**

► A node determines least-cost paths to all possible destinations

- ▶ No need to store entire path; store only next node in path (and optionally cost of path)
- ► Path information stored in *routing table* (or directory)

| Destination | Next       | Path Cost             |
|-------------|------------|-----------------------|
| $Node_1$    | $Node_{x}$ | <i>c</i> <sub>1</sub> |
| $Node_2$    | $Node_y$   | <b>c</b> <sub>2</sub> |
| :           |            |                       |

- ▶ Routing table may be stored on central node or distributed amongst each node
- ► Separation of routing and forwarding:

Routing: strategies, protocols and algorithms are

used to create routing table

Forwarding: routing table used to determine where to

send the data to next

13

ITS323/CSS331

Routing

Design Strategies

Protocols

# **Centralised Routing Table Example**

Routing table stored on one node

|         |   | From Node |   |   |   |   |   |
|---------|---|-----------|---|---|---|---|---|
|         |   | 1         | 2 | 3 | 4 | 5 | 6 |
| To Node | 1 | _         | 1 | 5 | 2 | 4 | 5 |
|         | 2 | 2         | - | 5 | 2 | 4 | 5 |
|         | 3 | 4         | 3 |   | 5 | 3 | 5 |
|         | 4 | 4         | 4 | 5 | _ | 4 | 5 |
|         | 5 | 4         | 4 | 5 | 5 | - | 5 |
|         | 6 | 4         | 4 | 5 | 5 | 6 | _ |

### **Distributed Routing Tables Example**

Routing

Design

Strategies

Protocols

Each node has its own routing table

| <b>Node 1 Directory</b> |           |  |
|-------------------------|-----------|--|
| Destination             | Next Node |  |
| 2                       | 2         |  |
| 3                       | 4         |  |
| 4                       | 4         |  |
| 5                       | 4         |  |
| 6                       | 4         |  |

| Node 2 Directory |           |  |
|------------------|-----------|--|
| Destination      | Next Node |  |
| 1                | 1         |  |
| 3                | 3         |  |
| 4                | 4         |  |
| 5                | 4         |  |
| 6                | 4         |  |

| Node 3 Directory |           |  |
|------------------|-----------|--|
| Destination      | Next Node |  |
| 1                | 5         |  |
| 2                | 5         |  |
| 4                | 5         |  |
| 5                | 5         |  |
| 6                | 5         |  |

| <b>Node 4 Directory</b> |           |  |
|-------------------------|-----------|--|
| Destination             | Next Node |  |
| 1                       | 2         |  |
| 2                       | 2         |  |
| 3                       | 5         |  |
| 5                       | 5         |  |
| 6                       | 5         |  |

| Node 5 Directory |           |  |
|------------------|-----------|--|
| Destination      | Next Node |  |
| 1                | 4         |  |
| 2                | 4         |  |
| 3                | 3         |  |
| 4                | 4         |  |
| 6                | 6         |  |

| <b>Node 6 Directory</b> |           |  |
|-------------------------|-----------|--|
| Destination             | Next Node |  |
| 1                       | 5         |  |
| 2                       | 5         |  |
| 3                       | 5         |  |
| 4                       | 5         |  |
| 5                       | 5         |  |

ITS323/CSS331

Routing

Design

Strategies

Protocols

## **Fixed Routing Summary**

- ► When is a decision made for a route? *At network* startup
- ► Which node chooses the route? *Centralised or distributed*
- ▶ Where does the network information come from? All nodes
- ▶ When is the network information updated? *Never*
- ► In practice, only used for small, stable networks (10s of nodes)

Routing

Design

Strategies

Protocols

### **Strategy 2: Flooding**

- ▶ Instead of choosing a route before sending the data, just send the data to everyone
  - ► A copy of the original packet is sent to all neighbours of the source
  - ► Each node that receives the packet, forwards a copy of the packet to all of its neighbours

### Advantages:

- ► All possible routes are tried; at least one packet will take minimum hop route, e.g. setup a virtual circuit
- ► All nodes are visited, e.g. distributing network status (topology) information
- ► Simple

### Disadvantages:

- ▶ Inefficient: need to send many copies of packet to get one packet from source to destination
- ► Using hop limit and/or selective flooding, packet may not reach destination

ITS323/CSS331

Routing

Design

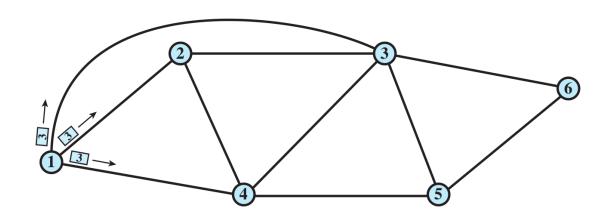
Strategies

Protocols

### Flooding Extensions

- 1. Don't send back to the node that just sent you the packet
- 2. Only forward packet once: nodes remember which packets they have forwarded (based on sequence number and source/destination addresses); do not forward a packet if you have previously forwarded that same packet
- **3.** Duplicate detection: each packet has a sequence number, so if destination receives multiple copies of the same packet, it can discard the duplicates
- **4.** Hop Limit: include a "hop counter" in the packet; decrement the counter each time the packet is forwarded—if it is 0, then discard the packet
- **5.** Selective Flooding: send to selection of neighbours. E.g. random, round-robin, probability-based

Flooding Example


Routing

Destination is node 6; Hop limit is 3

Design

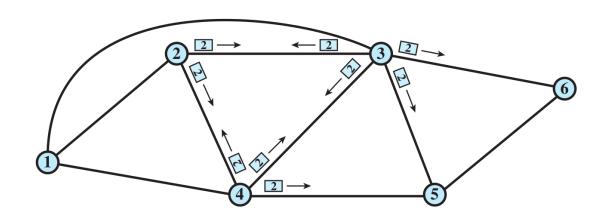
Strategies

Protocols



19

ITS323/CSS331


Routing

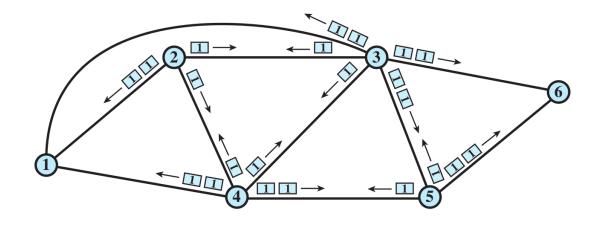
# Flooding Example

Design

Strategies

Protocols




## Flooding Example

Routing

Design

Strategies

Protocols



21

ITS323/CSS331

Routing

Design

Strategies

Protocols

# Flooding Example

How many packets transmitted in previous example? How much data is delivered to destination? What if hop limit was 2?

### **Selective Flooding Examples**

Routing

Design

Strategies

Protocols

23

#### ITS323/CSS331

#### Routing

Design

Strategies

Protocols

## **Strategy 3: Adaptive Routing**

- ► Use a least-cost routing algorithm to determine a route, and adapt the route as network conditions change
- ► Used in almost all packet switching networks, e.g. the Internet
- ► Requires network status information from:
  - 1. Local to node: route to output link that has shortest queue (rarely used)
  - **2.** Adjacent nodes: delay/link status, then least-cost routing
  - **3.** All nodes: similar to option 2

Routing

### **Characteristics of Adaptive Routing**

Design

Strategies

Protocols

**Advantages** 

► Improved performance: potentially can select the most suited paths; balance amount of traffic across the network

### **Disadvantages**

- ► Decisions more complex (complex algorithms needed to select the best path)
- ► Tradeoff between quality of network information and overhead
  - ► The more information required for routing decisions, and the more often updates are delivered, then the more overhead in the network
  - ► Reacting too quickly can cause oscillation
  - Reacting too slowly means information may be irrelevant

25

ITS323/CSS331

### **Contents**

Routing

Design

Strategies

Protocols

Routing in Switched Networks

**Routing Strategies** 

**Routing Protocols and Algorithms** 

Routing

Design

Strategies

Protocols

### **Routing Protocols**

- ► A routing protocol is used by nodes to automatically determine the routes in the network
- ► A routing protocol specifies:
  - ► Routing algorithm for determining least-cost routes: e.g. Dijkstra, Bellman-Ford or variants
  - ► Routing information to be exchanged between nodes
  - ► Formats of messages used to deliver routing information
  - ▶ Rules as to when to send routing messages and what to do upon receiving them
  - ▶ Metrics to be used in routing algorithm (hop count, bandwidth, ...)
  - ► Optionally, default values of specific parameters may be given
- ▶ Real routing protocols include: OSPF, RIP, BGP, IGRP, EIGRP, PNNI, IS-IS, DSDV, AODV, ...

ITS323/CSS331

Routing

Design

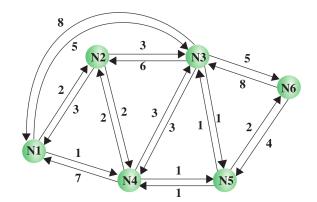
Strategies

**Protocols** 

### **Example: Link State Routing**

- ► Example: link state routing protocol that uses Dijkstra's algorithm to determine the least-cost routes
- ► Aim: Each node learns the topology of the network, then calculates the least-cost route from itself to every other node using Dijkstra's algorithm
- ► Steps for each node:
  - Record the state of its own links (e.g. source/destination, metric)
  - 2. Send the state of its own links to every other node by flooding a link state packet
    - ▶ identity of the current node
    - ▶ list of links that the current node has, including their costs
    - sequence number (used by the flooding protocol)
    - ► hop count or age (used by the flooding protocol)
  - **3.** Form a shortest path tree from itself to every other node
  - **4.** Build a routing table based on the shortest path tree

Routing


# **Example: Link State Routing**

Design

Strategies

Protocols

What is the link state packet created by node 1? What is the routing table created by node 1?



29

ITS323/CSS331

# **Example: Link State Routing**

Routing

Design

Strategies

Protocols

Routing

Design

Strategies

**Protocols** 

### **Summary: Concepts**

- Communication networks are formed by connecting devices across multiple links
- Switching is the method of delivering data between source and destination across multiple links
  - Stations or end-user devices act as sources and destinations of data
  - Switches connect the links and forward data between source and destination
- ► Circuit and Packet Switching techniques determine how to deliver data across one or more paths between source and destination
- ► Routing determines what path to take between source and destination
- ► There are different routing metrics, strategies, algorithms and protocols available

ITS323/CSS331

Routing

Design

Strategies

Protocols

## **Summary: Practice**

- ► Circuit switching was developed for traditional telephone networks and is still used today in those (and other) networks
- ► Packet switching was developed to be more efficient for delivering computer generated data over networks
- ► Packet switching is the concept used in the Internet and in almost all new Wide Area Networks (WANs) today
- Adaptive routing strategies are needed for almost all WANs
- ▶ Dijkstra and Bellman Ford are two of the most common algorithms for determining the shortest path between source and destination
- ► The trade-offs between the different routing protocols often depend on the size of networks, the amount of traffic and the rate at which the network changes