Multiplexing

Multiplexing

Multiple Access

Multiplexing

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 13 October 2015 ITS323Y15S1L07, Steve/Courses/2015/s1/its323/lectures/multiplexing.tex, r4135

ITS323/CSS331

Contents

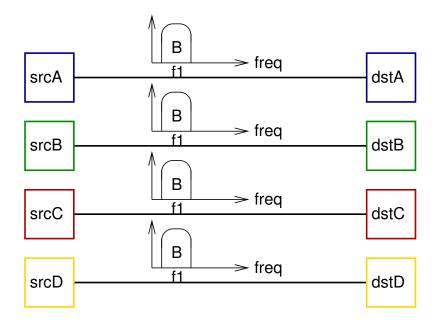
 ${\sf Multiplexing}$

Multiplexing

Multiple Access

Multiplexing

Multiple Access


Multiplexing

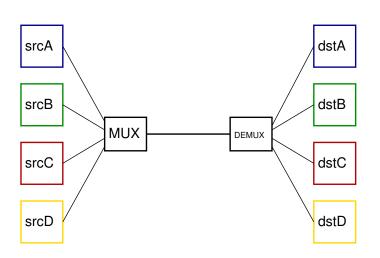
Multiplexing

Multiple Access

Supporting Multiple Users

- ► Multiple users in one location want to communicate with multiple users in another location
- ▶ Option 1: one link (line) per pair of users
- ► Each user has dedicated link, no interference
- ► Wasteful of resources; hard to expand

ITS323/CSS331

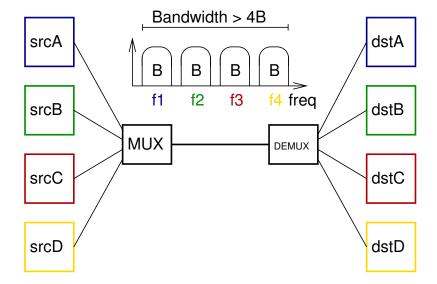

Multiplexing

Multiplexing

Multiple Access

Multiplexing

- ► A single line connects two locations via special devices
- ► Multiplexer (MUX) combines signals from each source user, and transmits one signal
- ► Demultiplexer (DEMUX) splits received signal into separate signals and sends to destination users
- ► How to combine signals from multiple users?


Multiplexing

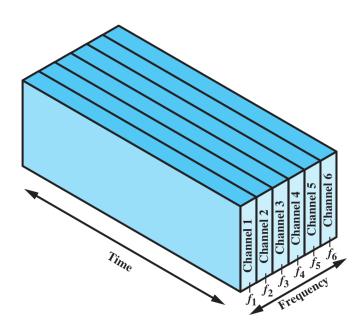
Multiplexing

Multiple Access

Frequency Division Multiplexing

► Signals from each user are transmitted at same time, but different frequencies

ITS323/CSS331

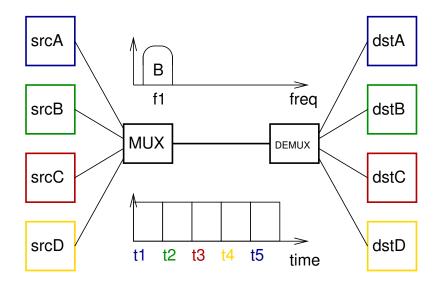

Multiplexing

Multiplexing

Multiple Access

Frequency Division Multiplexing

- ► FDM possible when useful bandwidth of medium exceeds required bandwidth of signals
- ► Each signal modulated onto different carrier frequency, sufficiently separated so signals do not overlap


Multiplexing

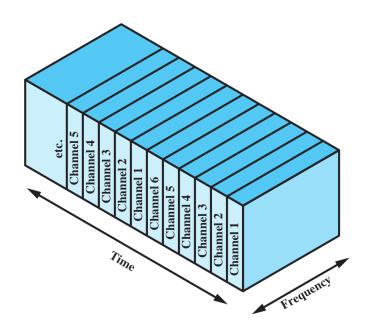
Multiplexing

Multiple Access

Time Division Multiplexing

 Signals from each user are transmitted on same frequency, but at different times

ITS323/CSS331


Multiplexing

Multiplexing

Multiple Access

Time Division Multiplexing

- ► Multiple digital signals carried on single transmission path by transmitting portions of each signal one at a time
 - ► Synchronous TDM
 - Statistical TDM

Example Multiplexing Technologies

Multiplexing

Multiplexing

Multiple Access

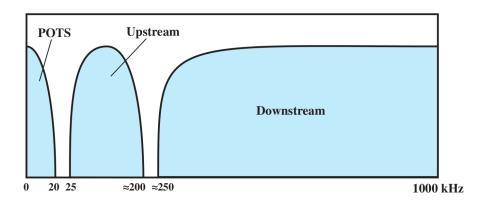
FDM

- ► Broadcast and cable TV, radio
- ► Long-distance carrier system deployed by telecom operators
- ► Optical fibre: Wavelength Division Multiplexing
- ► ADSL

TDM

- Digital carrier systems to replace FDM carrier systems (T-hierarchy, PDH)
- ► SONET/SDH

ITS323/CSS331


Multiplexing

Multiplexing

Multiple Access

FDM Example: ADSL

- ▶ Plain Old Telephone Service (POTS), voice calls: 0—20 kHz
- ▶ Uplink data to ISP: 25—200 kHz
- ▶ Downlink data from ISP: 250—1000 kHz

Multiplexing

Multiplexing

Multiple Access

TDM Example: SONET/SDH Signal Hierarchy

- ▶ PDH (T1, T2, E1, ...) used electrical digital signals for connections between buildings, cities, countries: upto about 500 Mb/s
- ► Gradually replaced with SONET (US) and SDH (rest of world), which uses optical carrier (OC) signals

SONET Designation	ITU-T Designation	Data Rate	Payload Rate (Mbps)
STS-1/OC-1		51.84 Mbps	50.112 Mbps
STS-3/OC-3	STM-1	155.52 Mbps	150.336 Mbps
STS-12/OC-12	STM-4	622.08 Mbps	601.344 Mbps
STS-48/OC-48	STM-16	2.48832 Gbps	2.405376 Gbps
STS-192/OC-192	STM-64	9.95328 Gbps	9.621504 Gbps
STS-768	STM-256	39.81312 Gbps	38.486016 Gbps
STS-3072		159.25248 Gbps	153.944064 Gbps

11

ITS323/CSS331

 ${\sf Multiplexing}$

Multiplexing

Multiple Access

Contents

Multiplexing

Multiple Access

Multiplexing

Multiplexing

Multiple Access

Supporting Multiple Users in Point-to-Multipoint Links

- ► Multiple users share a point-to-multipoint link
- ► Typical for wireless systems (WiFi, mobile phone) and some wired LANs
- ► Use multiple access schemes to determine who transmits and when

13

ITS323/CSS331

Multiplexing

Multiplexing

Multiple Access

Multiple Access: Fixed Assignment

A fixed assignment of transmission opportunities to users based on:

- ► Frequency Division Multiple Access (FDMA): users are assigned frequencies; transmit at same time
- ► Time Division Multiple Access (TDMA): users are assigned time slots; transmit on same frequency
- ► Code Division Multiple Access (CDMA): users are assigned codes, that allow receive to "separate" signals; transmit on same frequency, at same time
- ► Space Division Multiple Access (SDMA): transmissions in different physical areas, e.g. using directional antennas

Multiplexing

Multiplexing

Multiple Access

Multiple Access: Demand Assignment

Transmission opportunities are assigned to users on-demand:

- ▶ Reservation-based: users are assigned schedule of transmissions based on earlier reservations; use FDMA, TDMA, CDMA, SDMA
- ▶ Polling-based: users are asked if they want to transmit

15

ITS323/CSS331

Multiplexing

Multiplexing

Multiple Access

Multiple Access: Random Access

- ► Users transmit when desired, but after some random waiting time and as long as no-one else is transmitting
- ► The user that selects the smallest random waiting time will get to transmit first (and others will wait until they finish)
- ► Simple, can operate in distributed manner
- ► Used in wireless LANs (WiFi)