Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 3 August 2015 ITS323Y15S1L02, Steve/Courses/2015/s1/its323/lectures/data-transmission.tex, r3920

ITS323/CSS331

Contents

Data Transmission

Data Transmission

Data	Transm	vicci	

Data Rate

Signal Design

Impairments

Capacity

Data Transmission

Signal Design Principles

Bandwidth and Data Rate

Transmission Impairments

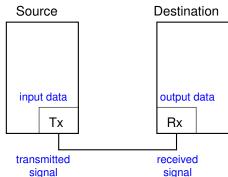
Channel Capacity

 $\mathsf{ITS323}/\mathsf{CSS331}$

Data Transmission

Data Transmission

Signal Design


Data Rate

Impairments

Capacity

Data and Signals

 Data communications involves transmitting data between a transmitter and receiver via some medium

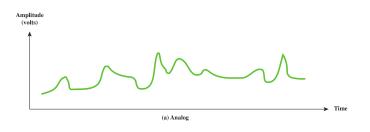
- Communication is in form of electromagnetic waves or signals
- Signals used to represent data
- Design of signals and characteristics of medium impact on how effective the communications are
 - Can the signal be received?
 - Are there any errors in the data received?
 - Is the data received in timely manner?

ITS323/CSS331

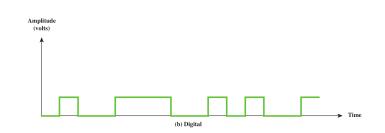
Data Transmission

Data Transmission

Signal Design


Data Rate

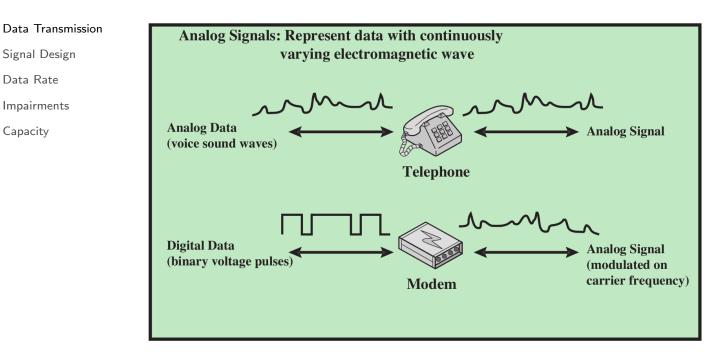
Impairments


Capacity

- Data can be analog or digital
- Signals can also be analog or digital

Analog signal varies in continuous manner over time

Digital signal maintains constant level for some period then changes to another constant level, in a discrete manner

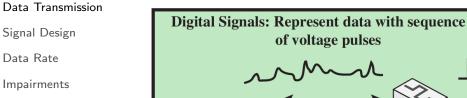

Data Transmission

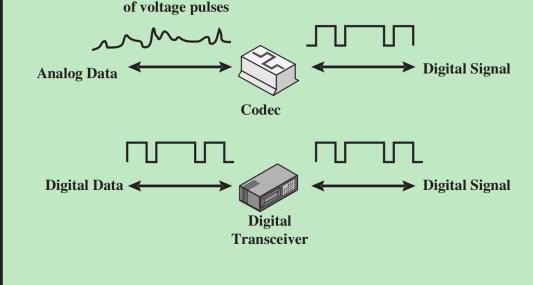
Signal Design

Data Rate Impairments

Capacity

Transmitting Data with Analog Signals


- Analog signals: telephone lines, audio systems, microwave wireless, ...
- Efficient use of bandwidth, but noise is a problem


Transmitting Data with Digital Signals

Data Transmission

Capacity

ITS323/CSS331

- Digital signals: LANs, WANs, mobile telephones,
- ► Can tolerate noise better than analog; easier to implement transmitters/receivers (can use software)

Data Transmission

- Data Transmission
- Signal Design
- Data Rate
- Impairments
- Capacity

Transmission Medium

- Medium may be: Guided: wires/cables, e.g. twisted pair, coaxial cable, optical fiber Unguided: wireless, e.g. air, water, vacuum
 Configuration may be: Point-to-point: only 2 devices share medium Multipoint: more than 2 devices share medium
 Direction of communications may be: Simplex: one direction, e.g. television Half duplex: either direction, but only one way at a time, e.g. police radio Full duplex: both directions at the same time, e.g. telephone
- Examples in "Transmission Media" topic

ITS323/CSS331

Contents

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Signal Design Principles

Bandwidth and Data Rate

Transmission Impairments

Channel Capacity

Data	Transmission	

Data	Transm	iss	io	n
Jala	ITAIISIII	155	U	

Signal Design

Data Rate

Impairments

Capacity

Communication Signal Design

- Designers of communications equipment and standards design signals that will achieve effective communications for the designated medium
- ► To simplify design, analysis, generation and reception, a signal is represented as the sum of one or more sinusoids (Fourier analysis)
- Data is represented in signals by varying properties of the sinusoids
- (Even digital signals can be viewed as summation of sinusoids)

Properties of Sinusoids

Data Transmission

ITS323/CSS331

Data Transmission

Signal Design

Data Rate

Impairments

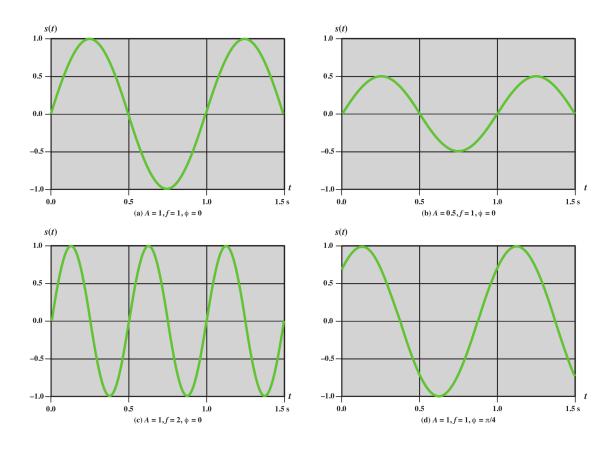
Capacity

Signal amplitude, <i>s</i> , as a function of time, <i>t</i> :				
$s(t) = A \sin \left(2 \pi f t + \phi ight)$				
Peak amplitude, A:	maximum strength of signal over time [volts]			
Frequency, f:	rate at which signal repeats [cycles per second or Hertz]			
Phase, ϕ :	relative position signal has advanced (or shifted) to some origin (usually 0) [radians]			
Period , T :	time for one repetition or cycle [seconds] ; $T=1/f$			
Wavelength, λ :	distance occupied by one cycle			

[metres]; $\lambda = c/f$ where c is speed of light ($\approx 3 \times 10^8 \text{m/s}$)

Data Transmission

Data Transmission


Signal Design

Data Rate

Impairments

Capacity

Sinusoid Signal

ITS323/CSS331

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Example: Representing Digital Data in Signals

See "Communication Signals Example" handout

- What is a signal element?
- ► What is signalling rate?
- ► What is data rate?

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

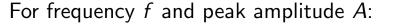
Complex Communication Signals

- Any periodic signal can be decomposed into the sum of a set of simple sinusoids
- See "Communication Signal Examples" handout
- A signal made up of component sinusoids has:
 - ► Fundamental frequency: lowest component frequency
 - Harmonic frequencies: integer multiples of fundamental frequency
 - Spectrum: range of frequencies of the components
 - Bandwidth: width of spectrum

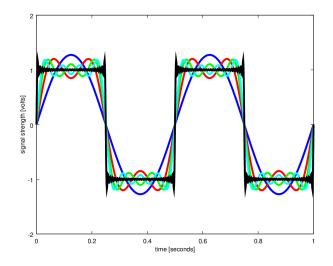
ITS323/CSS331

Creating Square Wave from Sinusoids

Data Transmission


Data Transmission

Signal Design


Data Rate

Impairments

Capacity

$$s_{square}(t) = A \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} sin(2\pi f(2k-1)t)$$

See "Communication Signal Examples" handout

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Time Domain vs Frequency Domain

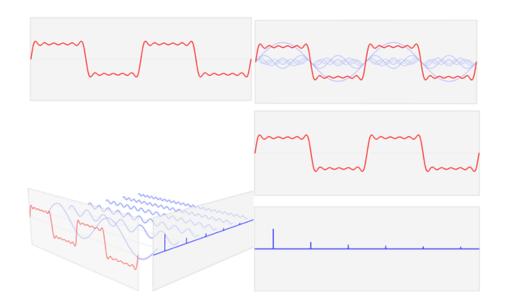
- Time Domain: signal amplitude vs time, s(t)
- Frequency Domain: signal peak amplitude vs frequency, S(f)
- To simplify design and analysis, communication signals often represented in frequency domain
- ► Important practical characteristics are easily visualised:

Cutoff Frequencieslowest and highest frequency
component for which amplitude is
significantly lower than peakBandwidthwidth between cutoff frequenciesCenter Frequency
Channelmean of cutoff frequenciesChannelrefers to medium that carries
signals with particular bandwidth
and center frequency

ITS323/CSS331

Example: Time to Frequency Domain

Data Transmission


Data Transmission

Signal Design

Data Rate

Impairments

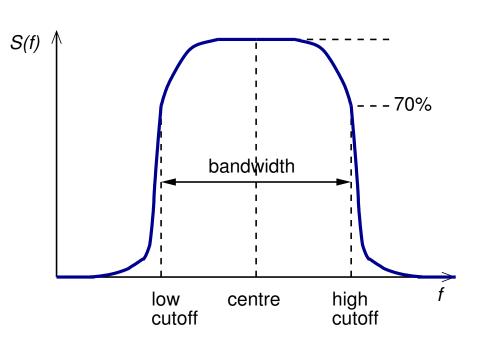
Capacity

See animation at https://commons.wikimedia.org/wiki/File:Fourier_series_and_transform.gif Credit: Lucas V. Barbosa, Wikimedia Commons, CCO 1.0 Universal Public Domain Dedication

Bandwidth of Signal in Practice

ITS323/CSS331

Data Transmission


Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Cutoff frequencies are often defined in standards, e.g. 70% of peak voltage, 50% of peak power, 3 dB lower than peak power

17

ITS323/CSS331 **Contents** Data Transmission Data Transmission Signal Design Data Rate Impairments Capacity

Data Transmission

Signal Design Principles

Bandwidth and Data Rate

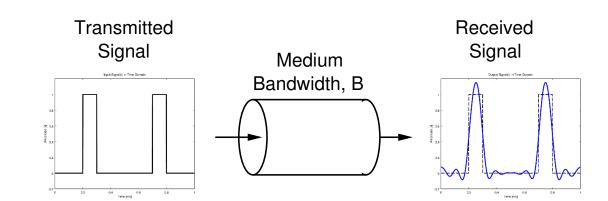
Transmission Impairments

Channel Capacity

Data Transmission

Data Transmission

Signal Design


- Data Rate
- Impairments

Capacity

Practical Concerns of Frequency and Bandwidth

- Why do we care about signal frequency and bandwidth?
- Electromagnetic spectrum is limited resource: more frequencies used, higher the cost
- Signals of different frequencies propagate in different ways, impaired differently
- Range of frequencies (bandwidth) impacts on amount of data that can be transferred
- In practice, bandwidth of transmission medium is limited (either physically or by regulations; see "Transmission Media" topic)
- Medium will only carry frequencies within allowed bandwidth
- Challenge: given bandwidth B, design a signal that maximises data rate and minimises errors

Signal in Bandwidth Limited Medium

- ► Assume medium has bandwidth limit of *B*
- ► Transmit a digital signal, e.g. 1000 bits/second
- Transmitted signal has infinite bandwidth
- Received signal has bandwidth of B
- For what values of B is received signal adequate representation of data?

See "Communication Signal Examples" handout

ITS323/CSS331 Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Tradeoffs

Bandwidth

- Digital signal has infinite bandwidth; transmission systems impose limits on bandwidth of signals
- Bandwidth is a limited resource
- Greater the bandwidth, greater the cost

Data Rate

- Digital data is approximated by signal of limited bandwidth
- Greater the bandwidth, greater the data rate

Accuracy

- Receiver must be able to interpret received signal, even with transmission impairments
- Limited bandwidth leads to more errors

ITS323/CSS331

Contents

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Signal Design Principles

Bandwidth and Data Rate

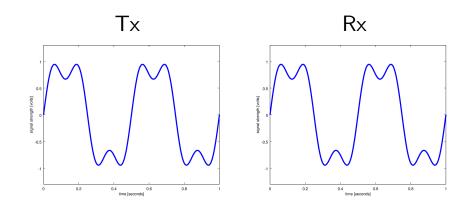
Transmission Impairments

Channel Capacity

Data Transmission

Data Transmission

Signal Design


Data Rate

Impairments

Capacity

Transmission Impairments

Perfect communications system: received signal is identical to that transmitted

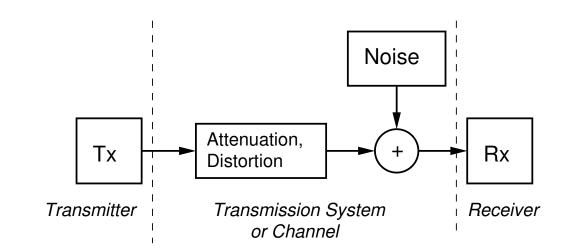
Real communications system: received signal is different from that transmitted due to impairments

- 1. Attenuation (and attenuation distortion)
- 2. Delay distortion
- **3.** Noise

ITS323/CSS331

Model of Transmission Impairments

Data Transmission


Data Transmission

Signal Design

Data Rate

Capacity

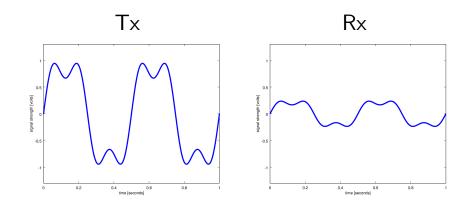
Impairments

- Received signal is the attenuated/distorted transmitted signal plus noise
- Challenge for receiver: from the received signal, interpret the transmitted data

Data Transmission

Data Transmission

Signal Design


Data Rate

Impairments

Capacity

Attenuation

As signal propagates its strength reduces (attenuates) with distance travelled

- Higher frequency components are attenuated more than lower frequency (attenuation distortion)
- Attenuation approx. proportional to distance squared (see Transmission Media topic for detailed models)

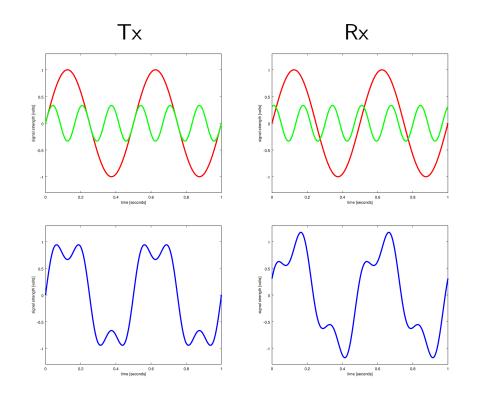
attenuation $\propto d^2$

ITS323/CSS331

Data Transmission

Data Transmission

Signal Design


Data Rate

Impairments

Capacity

Delay Distortion

Component signals with different frequencies travel at different speeds through medium

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Noise: "Any unwanted input"

Different sources of noise:

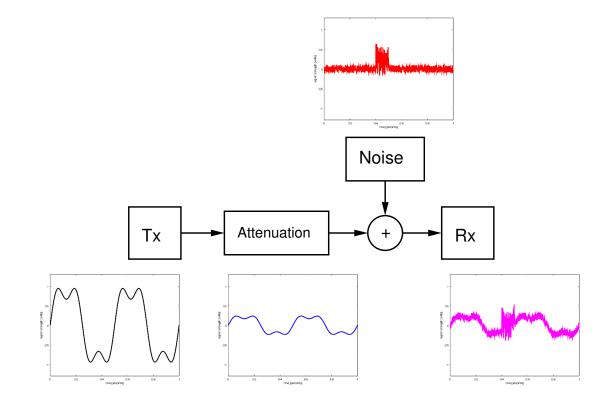
- **Thermal** due to thermal agitation of electrons; present in all transmission devices and media
- **Intermodulation** Interference from different frequencies sharing medium; caused by malfunctions or excessive signal strength
 - **Crosstalk** transmission from another source interferes with transmitted signal; from nearby cables, interference from other wireless transmitters
 - **Impulse** short spikes of noise from lightning, electrical disturbances, incorrectly operating devices

Noise is additive: noise from all sources is added together to get total noise (N); total noise is added to (attenuated/distorted) transmitted signal to get received signal

ITS323/CSS331

Attenuation and Noise

Data Transmission


Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Data Transmission	
Signal Design	
Data Rate	

Impairments

Capacity

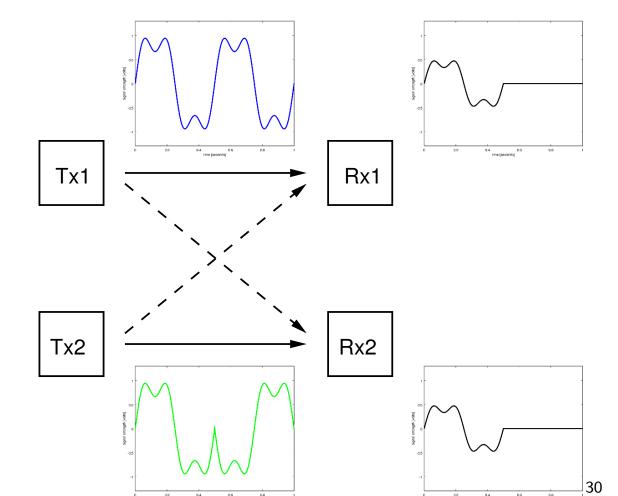
Crosstalk and Co-Channel Interference

- Signal transmitted on one channel has undesired effect on signal on another channel
- Example: two nearby wires with signal transmissions; one causes crosstalk noise on the other
- ► In wireless systems called co-channel interference
- Example: two radio devices transmit at same time on same center frequency; receiver receives both signals and unable to determine the correct data
 - Possible solution: devices transmit on different channels

ITS323/CSS331

Example: Co-Channel Interference

Data Transmission


Data Transmission

Signal Design

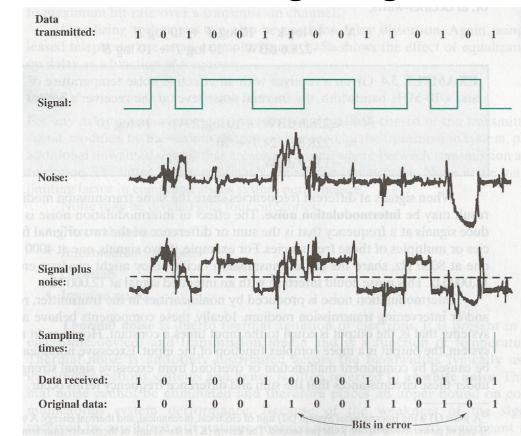
Data Rate

Impairments

Capacity

Data Transmission

Data Transmission


Signal Design

Data Rate

Capacity

Impairments

Effect of Noise on a Digital Signal

Credit: Figure 3.16 in Stallings, Data and Computer Communications, 9th ed., Pearson, 2011

ITS323/CSS331

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

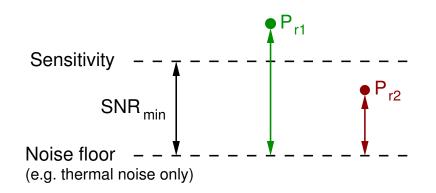
Transmitter and Channel Characteristics

- Signal strength: peak amplitude of signal
 - ▶ power [Watts] ∝ voltage² [Volts]
- Transmit Power, P_t
- Transmission system or channel:
 - ► Loss, L: attenuation means signal loses power
 - ► Noise, *N*: amount of noise introduced
- Receiver receives attenuated signal plus noise
- Received signal must be such that receiver can "understand" the data

Data Transmission

Data Transmission

Signal Design


Data Rate

Impairments

Capacity

Receiver Characteristics

- Minimum signal-to-noise ratio, SNR_{min}: received signal must be greater than noise to be "understood"
- Noise floor: minimum amount of noise received, e.g. thermal noise
- Sensitivity: minimum received power for which signal can be "understood"

- *P_{r1}*: successfully received since *P_{r1} > sensitivity* or *SNR_{r1} > SNR_{min}*
- *P_{r1}*: not received since *P_{r1} < sensitivity* or *SNR_{r1} < SNR_{min}*

33

ITS323/CSS331

Contents

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Signal Design Principles

Bandwidth and Data Rate

Transmission Impairments

Channel Capacity

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Channel Capacity

- Channel capacity: maximum data rate at which data can be transmitted over a given communication channel
- ► Terminology: capacity, data rate, bit rate, ...

(unless stated otherwise, assume they are the same in this course)

- ► In practice complex relationship between data rate and:
 - Bandwidth
 - ► Signal power
 - ► Signal encoding
 - Noise
 - Error rate
- Theoretical models allow for easy analysis and knowing upper limits

Nyquist Capacity: assumes noise-free environment Shannon Capacity: considers noise

ITS323/CSS331

Nyquist Capacity

- Assumes channel that is noise free
- Given a bandwidth of B, the highest signal rate is 2B
- Single signal element may carry more than 1 bit; signal with M levels may carry log₂ M bits

 $C = 2B \log_2 M$

- ► Tradeoffs:
 - Increase the bandwidth, increases the data rate
 - Increase the signal levels, increases the data rate
 - Increase the signal levels, harder for receiver to interpret the bits (practical limit to M)

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Data Transmission

Data Transmission Signal Design Data Rate Impairments

Capacity

Example of Nyquist Capacity

A telephone system with modem allows bandwidth of 3100 Hz. What is the maximum data rate?

ITS323/CSS331

Shannon Capacity

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

With noise, some bits may be corrupted; higher data rate, more bits corrupted

- Increasing signal strength overcomes noise
- ► Signal-to-noise ratio:

$$SNR = rac{\text{signal power}}{\text{noise power}}$$

► Shannon capacity:

$$C = B \log_2 \left(1 + SNR\right)$$

- ► Tradeoffs:
 - Increase bandwidth or signal power, increases data rate
 - ► Increase of noise, reduces data rate
 - Increase bandwidth, allows more noise
 - Increase signal power, causes increased intermodulation noise

Data Transmission

Data Transmission

Signal Design

Data Rate

Impairments

Capacity

Example of Shannon and Nyquist Capacity

A channel uses spectrum of between 3MHz and 4MHz, with $SNR_{dB} = 24dB$. How many signal levels are required to achieve Shannon capacity?