Data rate: $1 \mathrm{Mb} / \mathrm{s}$

Payload: 1000 B
Header/ACK: 50 B
Speed of light: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Satellite

Ground Station A

Ground Station B

Propagation delay: $36,000 \mathrm{~km} @ 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=120 \mathrm{~ms}$
DATA transmission delay: 1050 B @ $1 \mathrm{Mb} / \mathrm{s}=8.4 \mathrm{~ms}$
ACK transmission delay: $50 \mathrm{~B} @ 1 \mathrm{Mb} / \mathrm{s}=0.4 \mathrm{~ms}$

Stop and Wait (Window = 1)
Time to receive ACK: $8.4+120+0.4+120=248.8 \mathrm{~ms}$
Real data delivered: 1000 B
Throughput: 1000 B / $248.8 \mathrm{~ms}=32,154 \mathrm{~b} / \mathrm{s}$
Efficiency: $32,154 \mathrm{~b} / \mathrm{s}$ out of $1 \mathrm{Mb} / \mathrm{s}=3.2 \%$

Propagation delay: $36,000 \mathrm{~km} @ 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=120 \mathrm{~ms}$ DATA transmission delay: 1050 B @ $1 \mathrm{Mb} / \mathrm{s}=8.4 \mathrm{~ms}$ ACK transmission delay: $50 \mathrm{~B} @ 1 \mathrm{Mb} / \mathrm{s}=0.4 \mathrm{~ms}$

Sliding Window $($ Window $=7)$
Time to receive ACK: $8.4+120+0.4+120=248.8 \mathrm{~ms}$
Time to send window of frames: $7 \times 8.4=58.8 \mathrm{~ms}$
Real data delivered: 7000 B
Throughput: 7000 B / $248.8 \mathrm{~ms}=225,080 \mathrm{~b} / \mathrm{s}$
Efficiency: $225,080 \mathrm{~b} / \mathrm{s}$ out of $1 \mathrm{Mb} / \mathrm{s}=22.5 \%$

What size window to achieve highest efficiency?
Time to receive ACK: 248.8 ms

DATA Transmission delay: 8.4 ms

Aim: continuously send DATA frames (no waiting)
DATA frames in time to receive ACK: 248.8 / $8.4=29.6$
Window size of 30 frames is sufficient
With 5 bit sequence number, maximum window size is 31 frames
$W=31$:
Efficiency: 1000 B / 1050 B = 95.2 \%
Throughput: 952,381 b/s

