ITS323 – Performance Notes

Figure 1: Calculation of raw and compressed video size; Lecture 02

$$12 \text{ MB} = 96 \text{ Mb} = 96,000,000 \text{ bits}$$

$$26 \text{ sec}$$

$$Throughput = 96,000,000 \text{ b}$$

$$26 \text{ sec}$$

$$= 3.6 \text{ Mb/s}$$

Figure 2: File download throughput calculation; Lecture 03

Figure 3: Experimental setup of client and server with HTTP; Lecture 04

Data rate:
$$100 \text{ Mb/s}$$

1 bit: $\frac{1}{100 \text{ m}} = 10 \text{ ns}$
 $= 0.01 \text{ us}$
File IMB: $8 \text{ mb} = 8,000,000 \text{ b}$
Time to transmit = $\frac{8,000,000}{100,000,000}$
 $= 0.08 \text{ s}$
 $= 80 \text{ ms}$
File 50 MB : Time = 4000 ms
 $= 45$
(transmit)
Throughput: 50 MB in 4.3 s
 $= \frac{50 \times 10^6 \times 8}{4.3}$
 $= 93 \text{ mb/s} = 100 \text{ mb/s}$
Efficiency = $\frac{93}{100} = 93\%$

Figure 4: Data rate, throughput and efficiency calculations; Lecture 04

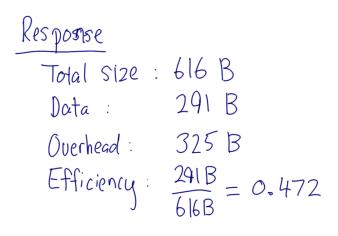


Figure 5: HTTP response overhead; Lecture 04

Client
I.I.I.
Ping
Pesponse
IOO B : 0.602 ms
$$\approx$$
 600 us
500 B : 0.898 ms \approx 900 us
500 B : 0.982 ms \approx 1000 us
1000 B : 0.982 ms \approx 1000 us
Transmission delay:
data size
data rate
100 B @ 100 mb/s : trans = 100x8
100 Nb/s : trans = 100x8
100 Nb/s = 8 us
Propagation delay
distance
Speed
Im @ 300,000,000 m/s
Prop = 1
3x10⁸ = 0.003 Ms
Processing delay

Figure 6: Ping delay for different packet sizes; Lecture 04

$$A = \frac{100 \text{ mb/s}}{3} B$$
Packet: 800 B + 200 B
data header

$$I000B$$
How long for 1 packet:

$$I000B @ 100 \text{ mb/s}$$

$$\frac{1000 \times 8}{100 \times 10^{5}} = 80 \text{ Ms}$$
Receive 1 packet every 80 us
Receive 800B data every 80 us
Receive 800B data every 80 us
Through put = $\frac{800B}{80 \text{ us}} = 80 \text{ mb/s}$
Efficiency = $\frac{80 \text{ mb/s}}{100 \text{ mb/s}} = 0.8 = 80\%$

Figure 7: Data rate, throughput and efficiency calculation (2); Lecture 04

$$A = \frac{10 \text{ km}}{\text{speed} = 2.8 \times 10^{9} \text{ m/s}} B$$

$$Speed = 2.8 \times 10^{9} \text{ m/s}}$$

$$IMb/s$$

$$IOOB data$$

$$tran = \frac{data \text{ size}}{data \text{ rate}}$$

$$= \frac{100 \text{ B}}{1 \text{ mb/s}}$$

$$= \frac{800}{1 \times 10^{6}} \frac{b}{b}$$

$$= 800 \text{ us}$$

$$prop = \frac{\text{distance}}{3 \text{ paed}}$$

$$= \frac{10 \text{ km}}{2.8 \times 10^{8} \text{ m/s}}$$

$$= 35.7 \text{ us}$$

$$total = 800 + 35.7 = 835.7 \text{ us}$$

Figure 8: Example of link delay; Lecture 05

36,000 km 4ms 1mb/s
36,000 km 4ms 1mb/s
120 120 120
BKK Total = 260 ms LA
1000 B
Uplink trans =
$$\frac{1000 \text{ B}}{1 \text{ mb/s}}$$

= $\frac{8000}{1 \times 10^6} \frac{5}{5}$
= 8 ms
prop = $\frac{36,000,000}{300,000} \frac{\text{m}}{7\text{s}}$
= 120 ms

Figure 9: Example of satellite network delay; Lecture 05