Internet

Internetworking

ΙP

IP Addresses

Internet Apps

ТСР

Application

The Internet

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 14 November 2014 ITS323Y14S1L14, Steve/Courses/2014/s1/its323/lectures/internet.tex, r3417

1

ITS323

Contents

Internet

Internetworking

IP

IP Addresses

Internet Apps

TCP

Application

Internetworking

The Internet Protocol

IP Addressing

Internet Applications

Transmission Control Protocol

Internet

LANs and WANs

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

LANs

- ► Different types: different topologies, different technologies, different purposes
- ▶ Many LANs operate at layers 1 and 2 (Physical and Data Link Layer) using switches and hubs
- Bridges can connect LANs of similar technologies together

WANs

- ► Can interconnect LANs over a larger distance
- ► Point-to-point link (e.g. ADSL, PDH) or a network (e.g. ATM, SDH, telephone) using packet or circuit switching
- ► Device that interconnects the WAN to LAN must support both technologies
- ► WANs typically operate at Layers 1 and 2

3

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

Connect Multiple LANs and WANs

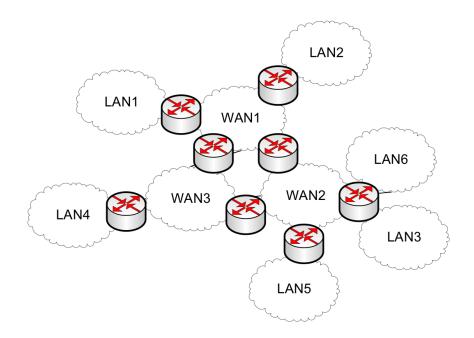
- Organisations have different requirements of their network, and therefore may choose different technologies for their LANs/WANs
- ► Aim: allow any computer to communicate with any other computer, independent of what LAN/WAN they are connected to
- ► Internetworking involves connecting the many different types of LANs/WANs together to achieve this aim
- ► An internetworking protocol supports data delivery across different types of LANs/WANs
- ► E.g. the Internet Protocol (IP)

Internet

Internetworking

ΙP

IP Addresses


Internet Apps

TCP

Application

Internetworking with Routers

- Internetworking is performed using routers
- ► Routers connect two or more LANs or WANs together
- Routers are packet switches that operate at network layer

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

The Internet Protocol

- ▶ IP is the internetworking protocol used in the Internet
- ► Implemented in hosts and routers
- Features:
 - ► Datagram packet switching
 - ► Network layer
 - ► Connnection-less
 - Addressing
 - ► Fragmentation-and-reassembly
- ▶ IP version 4 most widely used; IPv6 is available
- ► Features IP does NOT provide:
 - ► Connection control, error control, flow control (TCP)
 - Status reporting (ICMP)
 - ► Priority, quality of service (DiffServ, IntServ)
 - Security (IPsec)

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

Terminology

- ▶ Routers: nodes that connect networks (LANs/WANs) together; operate at network layer
- Subnetworks: individual networks (LANs and WANs)
- ► Internetworking: connect two or more subnets together using routers
- ► An internetwork or an internet: the resulting network from internetworking
- ► The Internet: an internet that uses the Internet Protocol (IP) and used today to connect networks across the globe
- ► Routing: process of discovering a path from source to destination through a network
- ► Forwarding: process of sending data along a path through a network
- ► Packet Switch: a generic device that performs switching in a Packet Switching network. May operate at data link or network layer. A packet switch at network layer is called a router
- ► Circuit Switch: a generic device that performs circuit switching in a Circuit Switching network
- ► Ethernet switch: an IEEE 802.3 switch (either Ethernet, Fast Ethernet or Gigabit Ethernet). Operates at data link layer

7

ITS323

Contents

Internet

Internetworking

IP

IP Addresses

Internet Apps

ТСР

Application

Internetworking

The Internet Protocol

IP Addressing

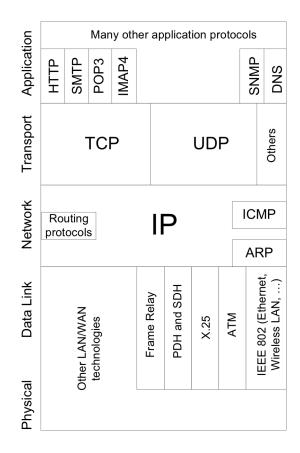
Internet Applications

Transmission Control Protocol

IP in the TCP/IP Stack

Internet

Internetworking


IΡ

IP Addresses

Internet Apps

TCP

Application

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

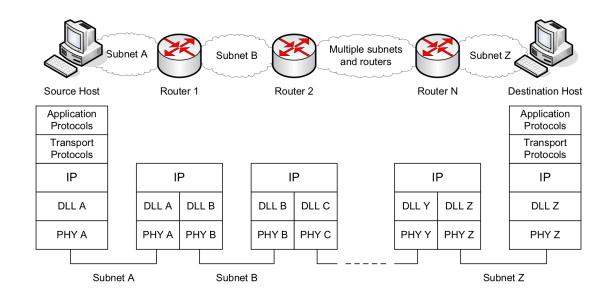
Application

IP Hosts and Routers

- Hosts are the end-devices (stations)
 - ► Usually only use single network interface at a time
 - ► Hosts do not forward IP datagrams
 - Either source or destination
- ► Routers are the datagram packet switches
 - ► Routers have two or more interfaces (since they connect LANs/WANs together)
 - ► Routers forward datagrams
 - Routers can act as a source or destination of datagrams (however this is mainly for management purposes)
- ▶ IP routing is the process of discovering the best path between source and destination; store destination and next router in routing table
 - ► E.g. RIP, EIGRP, OSPF, BGP
- ► IP forwarding is the process of delivering an IP datagram from source to destination; read next router from routing table

Internet

IP Hosts and Routers


Internetworking IP

IP Addresses

Internet Apps

TCP

Application

ITS323

Internet

Internetworking IP

IP Addresses

Internet Apps

TCP

Application

IP Datagram

- Variable length header and variable length data
- ► Header: 20 Bytes of required fields; optional fields may bring header size to 60 Bytes
- ▶ Data: length must be integer multiple of 8 bits; maximum size of header + data is 65,656 Bytes

	0	4	8	14	16	19	31			
T	Version	HLength	DiffServ	ECN		Total Length				
Se	Identification				Flags	Fragment Offset				
Bytes	Time T	o Live	Protocol		Header Checksum					
20			Sourc	Source IP Address						
	Destination IP Address									
	Options + Padding (optional)									
	Data									

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

IP Datagram Fields

- ► Version [4 bits]: version number of IP; current value is 4 (IPv4)
- ► Header Length [4 bits]: length of header, measured in 4 byte words
- ▶ DiffServ [6 bits]: Used for quality of service control
- ► ECN [2 bits]: Used for notifying nodes about congestion
- ► Total Length [16 bits]: total length of the datagram, including header, measured in bytes
- ► Identification: sequence number for datagram
- ► Flags: 2 bits are used for Fragmentation and Re-assembly, the third bit is not used
- ► Fragment Offset [13 bits]: See Fragmentation and Re-assembly
- ► Time To Live [8 bits]: datagram lifetime
- ▶ Protocol [8 bits]: indicates the next higher layer protocol
- ► Header Checksum [16 bits]: error-detecting code applied to header only; recomputed at each router
- ► Source Address [32 bits]: IP address of source host
- ▶ Destination Address [32 bits]: IP address of destination host
- ► Options: variable length fields to include options
- ▶ Padding: used to ensure datagram is multiple of 4 bytes in length
- ► Data: variable length of the data

13

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

IP Routing and Forwarding

Routing Tables

- ► Store address of destination and next node
- Created manually or by routing protocols

Routing Protocols in the Internet

- ► Collect network status information, calculate least cost paths and update routing tables
- ► Adaptive routing protocols: OSPF, RIP, EIGRP, BGP

Forwarding

- ► Routers forward IP datagrams from source host to destination host
- ► Destination host address in IP datagram header
- ► Lookup destination address in routing table

Other Features

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

► IP includes:

- ► Fragmentation and reassembly: source host and routers may divide datagrams into smaller fragments; destination host reassembles fragments into full datagram
- ► Time To Live (TTL): source sents "lifetime" of datagram in header; decremented by each router; if 0, datagram is discarded
- ► Other network layer features:
 - ► ICMP: error reporting, ping
 - ► ARP: map IP addresses to Ethernet addresses
 - ► IPv6
 - ► Multicasting
 - Quality of Service (DiffServ)
 - ► Mobility (Mobile IP)
 - Security (IPsec)

15

ITS323

Contents

Internet

Internetworking

IP

IP Addresses

Internet Apps

TCP

Application

Internetworking

The Internet Protocol

IP Addressing

Internet Applications

Transmission Control Protocol

Internet

► IPv4 addressess are 32 bits in length

IPv4 Addresses

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

- ► Split into network portion and host portion: first *N* bits identify a subnet in the Internet; last *H* bits identify an IP device (host/router) in that subnet
- ► All subnets in the Internet have unique network portion
- ► All IP devices in a subnet have same network portion, but unique host portions
- ▶ Where/how to split has changed over time: Classful, Subnet addressing, Classless addressing
- ► Focus on classless addressing
- ► Why split? Allows hierarchical addressing, makes routing in Internet scalable

17

ITS323

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

Representing IPv4 Addresses

- ▶ Writing and remembering 32 bits is difficult for humans
- ► IP addresses usually written in dotted decimal notation
- ► Decimal number represents the bytes of the 32 bit address
- Decimal numbers are separated by dots

IP: 11000000111001000001000100111001

Internet

Internetworking IP

IP Addresses

Internet Apps

TCP

Application

Classless IP Addressing

- ► Subnet mask or address mask identifies where the IP address is split between network and host portion
- ► Mask is 32 bits: a bit 1 indicates the corresponding bit in the IP address is the network portion; a bit 0 indicates the corresponding bit in the IP address is the host portion
- ► The mask can be given in dotted decimal form or a shortened form, which counts the number of bit 1's from left

IP: 10000010000100010100110000001 Mask: 111111111111111111111110000000000

19

ITS323

Internet

Internetworking IP

IP Addresses

Internet Apps

TCP

Application

Special Case IP Addresses

Selected IP addressess are used for special purposes; they cannot be used to identify a host

Network Address identifies a subnet in the internet; all bits in host portion are 0

Directed Broadcast Address identifies all hosts on a specific subnet; all bits in host portion are 1

Local Broadcast Address identifies all hosts on the current subnet; all bits are 1

Loopback Address identifies current host; first 8 bits are 01111111; also called localhost

Startup Source Address identifies host if currently it has no address; all bits are 0

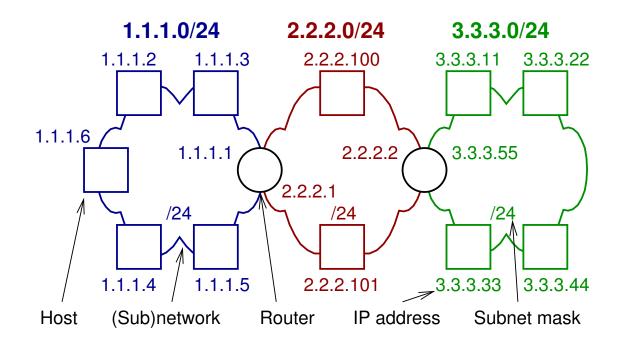
Selected addresses reserved for private networks (e.g. not connected to Internet; behind NAT)

- ► 10.0.0.0—10.255.255.255
- ► 172.16.0.0—172.31.255.255
- ► 192.168.0.0—192.168.255.255

Internet

Example of IP Addressing

Internetworking


ΙP

IP Addresses

Internet Apps

TCP

Application

21

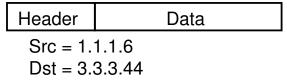
ITS323

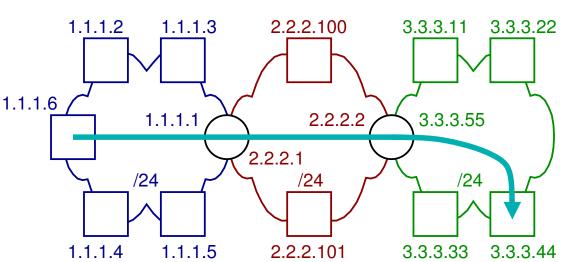
Internet

Internetworking

ΙP

IP Addresses


Internet Apps


TCP

Application

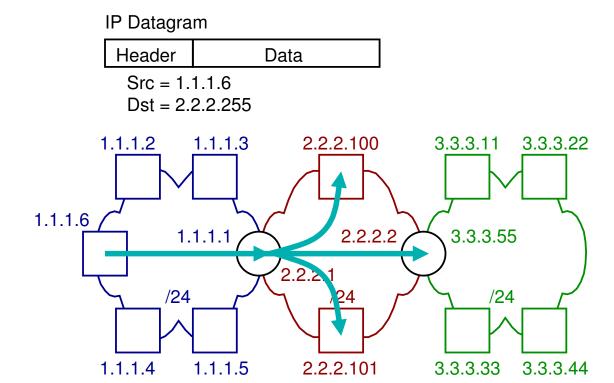
Example of Unicast

IP Datagram

Internet

Example of Directed Broadcast

Internetworking


IΡ

IP Addresses

Internet Apps

TCP

Application

23

ITS323

Internet

Internetworking

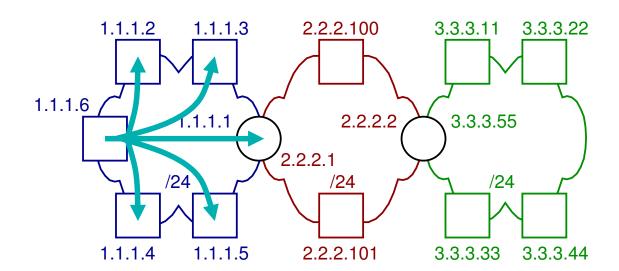
ΙP

IP Addresses

Internet Apps

TCP

Application


Example of Startup Source and Local Broadcast

IP Datagram

Header Data

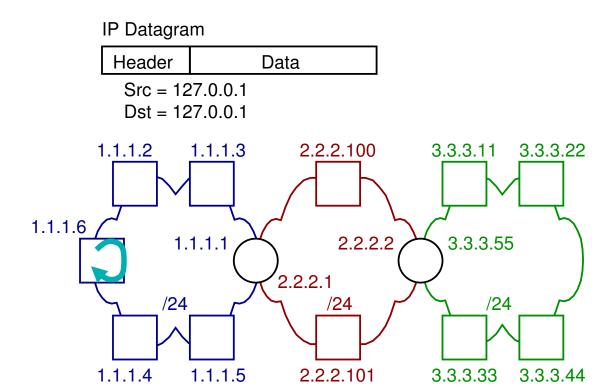
Src = 0.0.0.0

Dst = 255.255.255.255

Internet

Example of Loopback Address

Internetworking


ΙP

IP Addresses

Internet Apps

TCP

Application

25

ITS323

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

IP Addressing Example

My office computer has address 104.209.61.169/18. What is the network address and directed broadcast address for my network? How many IP devices can be attached to my network?

Internet

Obtaining an IP Address

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

- ► Internet Assigned Numbers Authority (IANA) manages the assignment of IP addresses
- ► IANA delegates IP network ranges to regional authorities (e.g. APNIC), delegated further to national registries (e.g. THNIC)
- ► Organisations obtain network addresses from national/local registries
- Organisations are free to assign addresses as they wish from assigned network address
 - ► Manually set IP address on each computer
 - ▶ Protocol to automatically configure IP addresses in computers on network: Dynamic Host Configuration Protocol

27

ITS323

Contents

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

Internetworking

The Internet Protocol

IP Addressing

Internet Applications

Transmission Control Protocol

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

Internet Applications

- Most Internet applications follow a client/server model of initiating communication:
 - 1. Server waits for client to initiate communication
 - 2. Client initiates communication
 - **3.** Once the communication is initiated, data can flow in both directions (client to server and server to client)

► Examples:

- Web browser (Firefox, Safari) and web server (Apache, IIS)
- Email client (Thunderbird, Outlook) and email server (MS Exchange, Postfix)
- ► Instant messaging client and server (LINE, MSN, TextSecure)
- Bittorrent (uTorrent, Transmission) and tracker (Opentracker, VUZE)

ITS323

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

Issues with Client/Server Applications

- ► How to make it easy for programmers to create applications without knowing details of communications?
 - ► Transport protocols implement features common to many apps, e.g. TCP, UDP
- ► How to allow applications implemented in different languages/OS by different people to communicate?
 - ► Application layer protocols, e.g. HTTP, SMTP, FTP
 - ▶ Use a common API: Sockets
- ► How to identify different applications on same computer?
 - ► Addresses to identify applications: Ports

Internet

Transport Protocols

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

- ► Send data between application processes on source and destination hosts
- ► End-to-end (or host-to-host) communications
- ► Transmission Control Protocol
 - Most widely used transport protocol
 - ► Connection-oriented, error control, flow control, congestion control
- ▶ Others: User Datagram Protocol (UDP), SCTP, DCCP, old and domain-specific protocols
- ▶ Protocol number: identifies transport protocol used by both hosts
 - \blacktriangleright 8-bit number; e.g. 6 = TCP, 17 = UDP; 1 = ICMP
 - ► Included in IP header

http://www.iana.org/assignments/protocol-numbers/

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

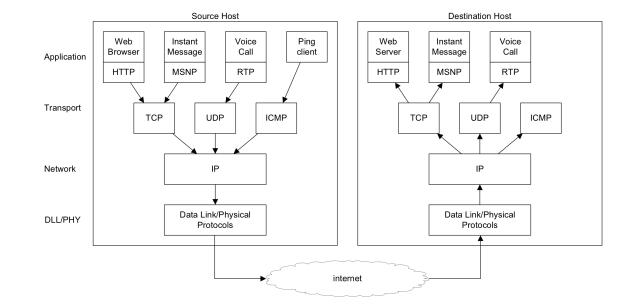
How does a client identify a server application?

- ► Internet contains multiple hosts
 - ► Host (interface) identified by IP address
- ► A host may implement multiple transport protocols
 - ► Transport protocol identified by protocol number
- Multiple applications may use same transport protocol
 - ► Ports identify application processes on a host
- ► Five addresses uniquely identify end-to-end communications
 - 1. Source IP
 - 2. Destination IP
 - **3.** Protocol number
 - **4.** Source port
 - 5. Destination port

Internet

Multiple Applications, Multiple Transport Protocols

Internetworking


IΡ

IP Addresses

Internet Apps

TCP

Application

ITS323

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

Port Numbers

- Ports are 16-bit numbers
- Source port, destination port in transport protocol header
- ► On a host, ports are managed by operating system
 - Unique port assigned to processes for Internet communications
 - Ports are local to a host
- ► Well-known ports: 0–1023
 - ► Common servers use well-known ports by default
 - http = 80, https = 443, ssh = 22, ftp = 20/21, smtp = 25, dns = 53, dhcp = 67, ipp = 631
- ► Registed ports: 0–49151
 - ► Servers use registed ports by default
 - ▶ openvpn = 1094, mysql = 3306, steam = 27015, . . .
- ▶ Dynamic ports: 49152–65535
 - Clients use dynamic ports, assigned by OS

http://www.iana.org/assignments/port-numbers/

Contents

Internet

Internetworking

IΡ

Internetworking

IP Addresses

Internet Apps

The Internet Protocol

TCP

Application

IP Addressing

Internet Applications

Transmission Control Protocol

Application Layer Protocols

ITS323

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

Transmission Control Protocol

- Most commonly used transport protocol today
 - ► Web browsing, email, file sharing, instant messaging, file transfer, database access, proprietary business applications, some multimedia applications (at least for control purposes), . . .
- Services provided by TCP:
 - ► Stream-oriented: TCP treats data from application as continuous stream of bytes, sequence numbers count bytes
 - ► Connection-oriented: setup connection before data transfer
 - ► Full duplex connection: send data in either direction
 - ► Flow and error control: Go-Back-N style
 - Congestion control: if network congestion, source slows down

Internet

TCP Segment

Internetworking
IP
IP Addresses

Internet Apps

TCP

Application

	0	4	8	16	31				
	Source Port			Destination Port					
Se	Sequence Number								
20 Bytes	Acknowledgement Number								
20	HLength	Reserved	Flags	Advertised Window					
		Check	ksum	Urgent Pointer					
	Options + Padding (optional)								
	Data								

- Header contains 20 bytes, plus optional fields
- Optional fields must be padded out to multiple of 4 bytes

ITS323

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

TCP Segment Fields

- ► Source/Destination port
- Sequence number of the first data byte in this segment (or ISN)
- ► Acknowledgement number: sequence number of the next data byte TCP expects to receive
- ► Header Length: Size of header (measured in 4 bytes)
- ► Window: number of bytes the receiver is willing to accept (for flow control)
- ► Checksum: error detection on TCP segment
- ► Urgent pointer points to the sequence number of the last byte of urgent data in the segment
- ► Options: such as maximum segment size, window scaling, selective acknowledgement, . . .

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

TCP Segment Flags

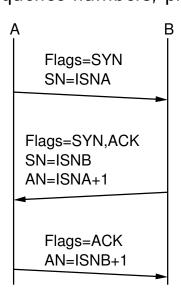
- ► Flags (1 bit each, if 1 the flag is true or on):
- ► CWR: Congestion Window Reduced
- ► ECE: Explicit Congestion Notification Echo
- ► URG: segment carries urgent data, use the urgent pointer field; receiver should notify application program of urgent data as soon as possible
- ► ACK: segment carries ACK, use the ACK field
- ► PSH: push function
- ► RST: reset the connection
- ► SYN: synchronise the sequence numbers
- ► FIN: no more data from sender

ITS323

Internet

Internetworking

IP Addresses
Internet Apps


ТСР

IΡ

Application

TCP Connection Establishment: Three-Way Handshake

Agree upon initial sequence numbers, prepare buffer for data

- ► Initiator A selects an Initial Sequence Number, ISNA
- ► B acknowledges *ISNA* and also chooses its own *ISNAB*
- Data transfer can start after ISNB is ACKed
- ► Optionally, 3rd segment can contain data

TCP Data Transfer

Internet

Internetworking

IΡ

IP Addresses

Internet Apps

TCP

Application

- Segments can contain varying amount of data
- ► Set ACK flag to indicate an acknowledgement, piggybacking is common
- ► Speed of data transfer depends on:
 - ► Flow control: sliding-window
 - ► Error control: Go-Back-N style
 - ► Congestion control: loss of segments indicates congestion, sender slows down

41

ITS323

Contents

Internet

Internetworking

IP Addresses

IΡ

Internet Apps

тистист трр

Application

TCP

Internetworking

The Internet Protocol

IP Addressing

Internet Applications

Transmission Control Protocol

Application Layer Protocols

Internet

Internetworking

ΙP

IP Addresses

Internet Apps

TCP

Application

 Many different protocols to support types of applications

- ► HTTP, FTP, SMTP, SSH, Telnet, BitTorrent, SIP, IMAP, RDP, SMB, . . .
- ► Other protocols to support network operation
 - ► DNS, DHCP/BOOTP, NTP, SNMP, ...