

$$s(t) = \frac{4}{\pi} [\sin(4\pi t) + \frac{1}{3}\sin(12\pi t)]$$

$$s(t) = \frac{4}{\pi} \left[\sin(4\pi t) + \frac{1}{3} \sin(12\pi t) + \frac{1}{5} \sin(20\pi t) \right]$$

$$s(t) = \frac{4}{\pi} \left[\sin(6\pi t) + \frac{1}{3} \sin(18\pi t) \right]$$

Summary

- Advantages
 - Increased bandwidth → increased accuracy (less errors)
 - Increased frequency \rightarrow increased data rate
- Disadvantages
 - Increased bandwidth → increased cost
 - Increased frequency → increased complexity (cost)
- Different frequencies have different characteristics
- A standard/regulation normally limits available frequency and bandwidth
 - A designer chooses a signal that maximizes data rate, minimizes errors and minimizes cost