IP

Motivation

IP

IP Addresses

Internet Protocols

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L12, Steve/Courses/2012/s1/its323/lectures/ip.tex, r2334

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

IP

Motivation

IP

IP Addresses

Contents

Internetworking Motivation and Requirements

The Internet Protocol

IP Addressing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

IP

Motivation

IP

IP Addresses

LANs and WANs

LANs

- Different types: different topologies, different technologies, different purposes
- Many LANs operate at layers 1 and 2 (Physical and Data Link Layer) using switches and hubs
- Bridges can connect LANs of similar technologies together

WANs

- Can interconnect LANs over a larger distance
- Point-to-point link (e.g. ADSL, PDH) or a network (e.g. ATM, SDH, telephone) using packet or circuit switching
- Device that interconnects the WAN to LAN must support both technologies
- ► WANs typically operate at Layers 1 and 2

IP

Motivation

IP

IP Addresses

Connect Multiple LANs and WANs

- Organisations have different requirements of their network, and therefore may choose different technologies for their LANs/WANs
- Aim: allow any computer to communicate with any other computer, independent of what LAN/WAN they are connected to
- Internetworking involves connecting the many different types of LANs/WANs together to achieve this aim

IP

Motivation

Internetworking with Routers

- Internetworking is performed using routers
- Routers connect two or more LANs or WANs together
- Routers are packet switches that operate at network layer

IP

Motivation

IP

IP Addresses

Terminology

- Routers: nodes that connect networks (LANs/WANs) together; operate at network layer
- Subnetworks: individual networks (LANs and WANs)
- Internetworking: connect two or more subnets together using routers
- An internetwork or an internet: the resulting network from internetworking
- The Internet: an internet that uses the Internet Protocol (IP) and used today to connect networks across the globe
- Routing: process of discovering a path from source to destination through a network
- Forwarding: process of sending data along a path through a network
- Packet Switch: a generic device that performs switching in a Packet Switching network. May operate at data link or network layer. A packet switch at network layer is called a router
- Circuit Switch: a generic device that performs circuit switching in a Circuit Switching network
- Ethernet switch: an IEEE 802.3 switch (either Ethernet, Fast Ethernet or Gigabit Ethernet). Operates at data link layer

IP

Motivation

IP

IP Addresses

Requirements of an Internetworking Protocol

- Provide link between subnetworks
- Provide for routing and delivery of data between processes on different subnets
- Provide service to keep track of use of networks and maintain status information
- Provide above services without requiring changes to the subnets. Accommodate differences between subnets, e.g.
 - Different addressing schemes
 - Different maximum packet size
 - Different timeouts
 - Error recovery
 - Status reporting
 - Routing techniques
 - Security
- The Internet Protocol meets some of these requirements. Others are left to ICMP, TCP and other protocols in the TCP/IP architecture

IP

Motivation

IP

IP Addresses

Contents

Internetworking Motivation and Requirements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Internet Protocol

IP Addressing

IP

Motivation

- IP
- IP Addresses

The Internet Protocol

- ► IP is the internetworking protocol used in the Internet
 - We focus on IP version 4 (IPv4); IPv6 is available but net yet in widespread use
 - Other internetworking protocols: IPX, X.25, CLNP, SCCP
- Initially developed by US Department of Defence; now Internet Standard produced by IETF
- Features of IP:
 - Connectionless, network layer internetworking protocol using datagram packet switching
 - Provides data delivery, addressing, fragmentation and re-assembly
- Features IP does NOT provide:
 - Connection control, error control, flow control (TCP)
 - Status reporting (ICMP)
 - Priority, quality of service (DiffServ, IntServ)
 - Security (IPsec)

IP

Motivation

IP

IP Addresses

IP in the TCP/IP Stack

ion	Many other application protocols												
Applicat	НТТР	SMTP	POP3	IMAP4							SNMP	DNS	
Transport		-	TCI	Ρ				UD	Ρ	Others			
Network	Ro prot	uting ocol	l S			IF	C			ICMP ARP			
Data Link		er LAN/WAN	chnologies		Frame Relav		PDH and SDH	X.25	ATM		EEE 802 (Ethernet, Wireless LAN, …)		
Physical	Othe									<u> </u>			

IP

Motivation

IP

IP Addresses

IP Datagram

- Variable length header and variable length data
- Header: 20 Bytes of required fields; optional fields may bring header size to 60 Bytes
- Data: length must be integer multiple of 8 bits; maximum size of header + data is 65,656 Bytes

	0	4	8	14	16	19	31					
Sel	Version	HLength	DiffServ	ECN		Total Length						
		Identifi	cation	Flags	Fragment Offset							
Byt	Time T	o Live	Protocol		Header Checksum							
50		Source IP Address										
	Destination IP Address											
Options + Padding (optional) Data												

IP

Motivation

IP

IP Addresses

IP Datagram Fields

- Version [4 bits]: version number of IP; current value is 4 (IPv4)
- Header Length [4 bits]: length of header, measured in 4 byte words
- DiffServ [6 bits]: Used for quality of service control
- ECN [2 bits]: Used for notifying nodes about congestion
- Total Length [16 bits]: total length of the datagram, including header, measured in bytes
- Identification: sequence number for datagram
- Flags: 2 bits are used for Fragmentation and Re-assembly, the third bit is not used
- Fragment Offset [13 bits]: See Fragmentation and Re-assembly
- Time To Live [8 bits]: datagram lifetime
- Protocol [8 bits]: indicates the next higher layer protocol
- Header Checksum [16 bits]: error-detecting code applied to header only; recomputed at each router
- Source Address [32 bits]: IP address of source host
- Destination Address [32 bits]: IP address of destination host
- Options: variable length fields to include options
- Padding: used to ensure datagram is multiple of 4 bytes in length
- ► Data: variable length of the data

IP

Motivation

IP

IP Addresses

Connectionless Internetworking with IP

Connection-oriented Internetworking

- Logical connection created between source and destination for data transfer
- All datagrams sent within connection are associated with each other
- Connection setup, data transfer, connection termination

Connectionless Internetworking

- No connection between source and destination
- Datagrams are treated independently
- Advantages:
 - Flexible: can deal with different networks, requires little of subnets
 - Very small overhead if connectionless transport (e.g. UDP) is used

IP

Motivation

IP

IP Addresses

IP Hosts and Routers

- Hosts are the end-devices (stations)
 - Usually only use single network interface at a time
 - Hosts do not forward IP datagrams
 - Either source or destination
- Routers are the datagram packet switches
 - Routers have two or more interfaces (since they connect LANs/WANs together)
 - Routers forward datagrams
 - Routers can act as a source or destination of datagrams (however this is mainly for management purposes)

- IP routing is the process of discovering the best path between source and destination
- IP forwarding is the process of delivering an IP datagram from source to destination

IP

Motivation

IP

IP Addresses

IP Hosts and Routers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

IP

Motivation

IP

IP Addresses

IP Routing

. . .

- No routing protocol is specified for IP
- Any of the available routing protocols can be used depending on the network topology and requirements of network administrator, e.g. RIP, EIGRP, OSPF, BGP,
- Each routing protocol creates and updates a routing table, which stores information to determine the path from source to destination
- IP uses the information in the routing tables to forward datagrams

- In order to make routing tables manageable, three strategies are used in the Internet:
 - Storing Next-Hop Routes
 - Network-specific Routing
 - Default Routes

IP

Motivation

IP

IP Addresses

IP Forwawrding

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

IP

Motivation

IP

IP Addresses

Fragmentation and Re-assembly

- Network layer may divide data from transport layer into multiple blocks (fragmentation)
- Data is re-assembled before being delivered to transport layer at destination
- Why fragmentation and re-assemble?
 - Subnets on path from source to destination may limit maximum size of frame
 - Error control may be more efficient with smaller packets
 - Smaller packets means smaller buffers needed at receivers
- Disadvantages of fragmentation and re-assembly:
 - Smaller packets means header contributes larger overhead
 - More packets means more time processing by routers, receiver

IP

Motivation

IP

IP Addresses

Fragmentation and Re-assembly

200

IP

Motivation

IP

IP Addresses

Fragmentation and Re-assembly

Three general options in internetworking:

- 1. Fragment only at source; re-assemble only at destination
- 2. Fragment at source and routers; re-assemble only at destination
- 3. Fragment at source and routers; re-assemble at routers and destination

IP uses option 2:

- No need for source to know maximum transmission units along path
- No need for routers to have large buffers for re-assembly

 No need for all fragments to pass through same router
IP uses header fields to indicate if fragmentation has occured and identify fragments

IP

Motivation

IP

IP Addresses

Fragmentation Example

IP

Motivation

IP

IP Addresses

Datagram Lifetime in IP

- With adpative/dynamic routing, it is possible for a routing loop; datagram sent forever
- Datagram marked with lifetime, when lifetime expires datagram is discarded
- ▶ IP uses a hop count:
 - Time To Live (TTL) field in header set to number of hops source allows the datagram to traverse (e.g. 64, 255)
 - Each router that processes datagram decrements the TTL field

- If TTL is 0, datagram is discarded
- Simpler than using actual time, as would require synchronisation between clocks on devices

IP

Motivation

IP

IP Addresses

Contents

Internetworking Motivation and Requirements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Internet Protocol

IP Addressing

IP

Motivation

IP

IP Addresses

IPv4 Addresses

- ► IPv4 addressess are 32 bits in length
- Split into network portion and host portion: first N bits identify a subnet in the Internet; last H bits identify an IP device (host/router) in that subnet
- All subnets in the Internet have unique network portion
- All IP devices in a subnet have same network portion, but unique host portions
- Where/how to split has changed over time: Classful, Subnet addressing, Classless addressing
- Focus on classless addressing
- Why split? Allows hierarchical addressing, makes routing in Internet scalable

IP

Motivation

IP

IP Addresses

Representing IPv4 Addresses

- Writing and remembering 32 bits is difficult for humans
- ► IP addresses usually written in dotted decimal notation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Decimal number represents the bytes of the 32 bit address
- Decimal numbers are separated by dots

IP: 11000000111001000001000100111001

IP

- **Motivation**
- IP
- IP Addresses

Classless IP Addressing

- Subnet mask or address mask identifies where the IP address is split between network and host portion
- Mask is 32 bits: a bit 1 indicates the corresponding bit in the IP address is the network portion; a bit 0 indicates the corresponding bit in the IP address is the host portion
- The mask can be given in dotted decimal form or a shortened form, which counts the number of bit 1's from left

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IP: 1000001000100010010100000001 Mask: 11111111111111111110000000000

IP

Motivation

IP

IP Addresses

Special Case IP Addresses

Selected IP addressess are used for special purposes; they cannot be used to identify a host Network Address identifies a subnet in the internet; all bits in host portion are 0 Directed Broadcast Address identifies all hosts on a specific subnet; all bits in host portion are 1 Local Broadcast Address identifies all hosts on the current subnet: all bits are 1 Loopback Address identifies current host; first 8 bits are 01111111; also called localhost Startup Source Address identifies host if currently it has no address; all bits are 0 Selected addresses reserved for private networks (e.g. not connected to Internet; behind NAT)

- 10.0.0.0—10.255.255.255
- 172.16.0.0—172.31.255.255

IP

Motivation

IP

IP Addresses

IP Addressing Example

View the IP address on your own computer.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

IP

Motivation

IP

IP Addresses

IP Addressing Example

My office computer has address 104.209.61.169/18. What is the network address and directed broadcast address for my network? How many IP devices can be attached to my network?

IP

Motivation

IP

IP Addresses

Classful IP Addressing

- Before "classless" addressing was introduced, the split was identified by one of 5 classes of addresses:
 - Class A first bit 0; network/host split after 8 bits (1.0.0.0—126.0.0.0)
 - Class B first two bits 10; split after 16 bits (128.0.0.—191.255.0.0)
 - Class C first three bits 110; split after 24 bits (192.0.0.0—223.255.255.0)
 - Class D first four bits 1110; used only for multicast Class E first five bits 11110; reserved for future use
- Subnet mask not needed; first bits of address determine the split
- Problem: only allow 3 different size networks (class A, B or C)

Motivation

IP

IP Addresses

Classful IP Addressing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

IP

Motivation

IP

IP Addresses

Obtaining an IP Address

- Internet Assigned Numbers Authority (IANA) manages the assignment of IP addresses
- IANA delegates IP network ranges to regional authorities (e.g. APNIC), delegated further to national registries (e.g. THNIC)
- Organisations obtain network addresses from national/local registries
- Organisations are free to assign addresses as they wish from assigned network address

IP

Motivation

IP

IP Addresses

Other Network Layer Functionality

- ► ICMP: error reporting, ping
- ► ARP: map IP addresses to Ethernet addresses

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► IPv6
- Multicasting
- Quality of Service
- Mobility
- Security