LANs

LAN Design IEEE 802

Local Area Networks

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L11, Steve/Courses/2012/s1/its323/lectures/lans.tex, r2334

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

LANs

LAN Design

IEEE 802

Frame & Address

Contents

LAN Design Elements

IEEE 802 LANs

IEEE 802.3 MAC Frames and Addresses

LANs

LAN Design

IEEE 802

Frame & Address

WANs and LANs

Wide Area Networks

- Connect devices/networks over large geographical area
- Between campuses, office buildings, cities, countries
- Owned and operated by organisations on behalf of users, e.g. TOT, CAT, TT&T
- Leased to users, e.g. unis, companies, smaller ISPs

Local Area Networks

- Connect end-user devices over small area
- Within campuses, buildings, homes
- Owned and operated by organisation using the network
- Typically support higher data rates than WANs (internal communications, multiplexing)

LANs

LAN Design

IEEE 802

Frame & Address

LAN Design Elements

- Topology: what is the arrangement of connections between nodes?
- Transmission medium: what medium is used for the links?
- Medium access control: how to control access for stations on a shared medium?

LANs

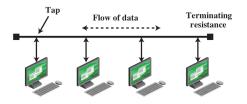
LAN Design

IEEE 802

Frame & Address

LAN Topology

- Recall link configurations: point-to-point and multipoint
- LANs allow multiple users to communicate with each other
- Topology is arrangement of nodes and links
 Mesh every station has point-to-point link to every other station
 - Bus every station connected via a multipoint link
 - Ring point-to-point links between pairs of stations to form ring
 - Star every station has point-to-point link to central device
 - Hybrid combination of 2 or more of above, e.g. tree is combination of star and bus topologies
- Mesh only suitable for very small LANs; requires many links. (Partial mesh used in some WANs)


LANs

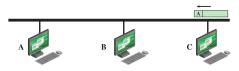
LAN Design

IEEE 802

Frame & Address

Bus Topology

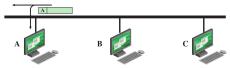
- Single multipoint link connects all stations (via tap)
- Transmission propagates throughout medium and is heard by all stations
- ▶ Terminator absorbs frames at end of medium/cable
- Frames need addresses
- Pros: easy installation
- Cons: require protocols to share medium; faulty link stops all communications; limited number of stations
- ► Usage: Early Ethernet networks, but replaced by star


LANs

LAN Design


IEEE 802

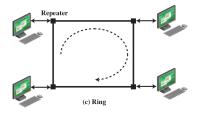
Frame & Address


Frame Transmission on a Bus LAN

C transmits frame addressed to A

Frame is not addressed to B; B ignores it

A copies frame as it goes by


LANs

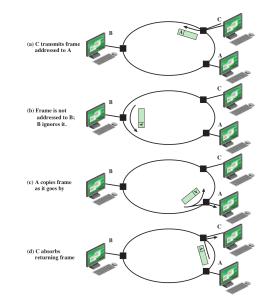
LAN Design

IEEE 802

Frame & Address

Ring Topology

- Unidirectional point-to-point links to form loop
- Stations attach to repeaters
- Frames need addresses
- Pros: simple to install and reconfigure; easy to identify faults
- Cons: require protocols to share medium; traffic flows in one direction
- Usage: old LANs (e.g. IBM Token Ring); MANs and WANs

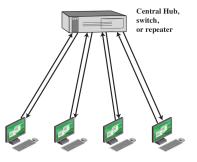

LANs

LAN Design

IEEE 802

Frame & Address

Frame Transmission on a Ring LAN


LANs

LAN Design

IEEE 802

Frame & Address

Star Topology

- Traffic between stations goes via the central node
- Usually two point-to-point links between station and central node (or duplex link)

- Frames needed addresses
- Pros: easy to install; fault tolerance for links
- Cons: depends on central node
- Usage: Most LANs today

LANs

LAN Design

IEEE 802

Frame & Address

Transmission Medium

- Many factors impact on the most appropriate transmission medium for a LAN: reliability, expandability, performance, building layout, medium availability
- Common cases include:
 - Coaxial cable often used for bus topology
 - Optical fibre for ring topology; usually the highest speed networks

 Twisted pair for star topologies; often well-suited for LANs in buildings (cheap, easy to install)

LANs

LAN Design

IEEE 802

Frame & Address

Medium Access Control

- In a shared medium, if two (or more) stations transmit at the same time, there is a chance the two transmissions will interfere with each other
- Collision of frames: receiver receives two or more frames partially overlapping in time; assume all frames are corrupted/lost
- Medium Access Control: allow one station to use the shared medium at a time (avoiding collisions)
- MAC techniques must give stations opportunities to transmit: fair and efficient

- Techniques can be:
 - Centralised or distributed
 - Fixed or dynamic

LANs

LAN Design

IEEE 802

Frame & Address

MAC Examples

- Round-Robin MAC
- Reservation-based MAC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Random-access MAC

LANs

LAN Design

IEEE 802

Frame & Address

Contents

LAN Design Elements

IEEE 802 LANs

IEEE 802.3 MAC Frames and Addresses

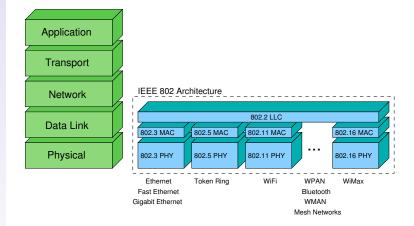
LANs

LAN Design

IEEE 802

Frame & Address

IEEE 802 LAN Architecture


- IEEE 802 LAN/MAN standards committee has developed the majority of the LAN standards in use including:
 - Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, Wireless LAN (WiFi), ...
- ▶ 802 series of standards follow common architecture
- Standardised only at Physical layer and Data Link layer
- Data Link layer divided into: Logical Link Control (LLC) and Medium Access Control (MAC)
- 802 can support many MAC/Physical protocols, and uses one common LLC protocol

LANs

LAN Design

Frame & Address

IEEE 802 LAN Architecture

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

LLC = Logical Link Control MAC = Medium Access Control PHY = Physical

LANs

LAN Design

IEEE 802

Frame & Address

Characteristics of Some High-Speed LANs

	Fast Ethernet	Gigabit Ethernet	Fibre Channel	Wireless LAN
Data Rate	100 Mbps	1 Gbps, 10 Gbps, 100 Gbps	100 Mbps - 3.2 Gbps	1 Mbps - 54 Mbps
Transmission Media	UTP, STP, optical fiber	UTP, shielded cable, optical fiber	Optical fiber, coaxial cable, STP	2.4-GHz, 5-GHz microwave
Access Method	CSMA/CD	Switched	Switched	CSMA/Polling
Supporting Standard	IEEE 802.3	IEEE 802.3	Fibre Channel Association	IEEE 802.11

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

LANs

LAN Design

IEEE 802

Frame & Address

IEEE 802.3: Ethernet

- IEEE 802.3 defines one of the most commonly used LAN standards in the world
- Ethernet developed in 1970's; standardised as IEEE 802.3
- Various improvements: Fast Ethernet, Gigabit Ethernet, 10Gb/s Ethernet
- Support various physical media: UTP, STP, coaxial cable, optical fibre
- Original popular Ethernet:
 - Bus topology
 - Coaxial cable
 - ▶ 10Mb/s
 - Contention-based Random-Access MAC (CSMA/CD)
 - Half-duplex
- Replaced by star topology with twisted pair

LANs

LAN Design

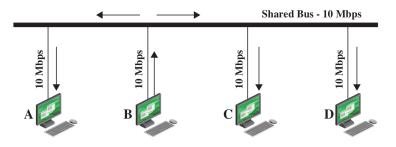
IEEE 802

Frame & Address

IEEE 802.3 10-Mbps Physical Layer Medium Alternatives

	10BASE5	10BASE2	10BASE-T	10BASE-FP
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/on- off
Topology	Bus	Bus	Star	Star
Maximum segment length (m)	500	185	100	500
Nodes per segment	100	30	_	33
Cable diameter (mm)	10	5	0.4 to 0.6	62.5/125 μm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで


LANs

LAN Design

IEEE 802

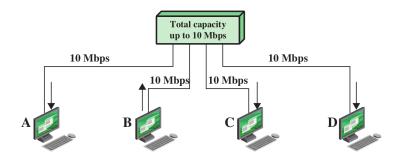
Frame & Address

Shared Medium Bus

・ロト ・聞ト ・ヨト ・ヨト

æ

LANs


LAN Design

IEEE 802

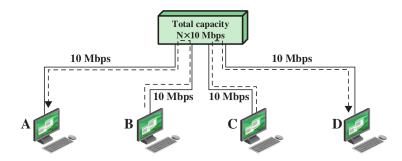
Frame & Address

Shared Medium Hub

Hub: receives a frame on an input link, and transmits a copy of that frame on all other output links

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

LANs


LAN Design

IEEE 802

Frame & Address

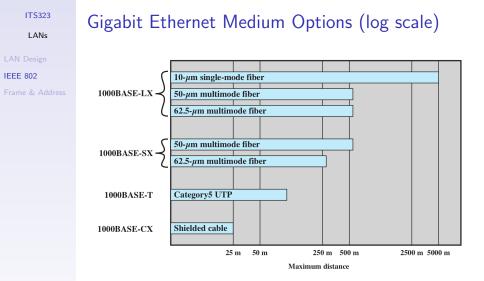
Layer 2 Switch

Switch: receives a frame on an input link, looks at the destination address, and transmits the frame on the intended output link

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LANs

LAN Design


IEEE 802

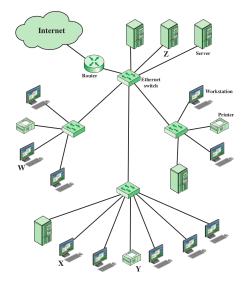
Frame & Address

IEEE 802.3 100BASE-T Physical Layer Medium Alternatives

	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum segment length	100 m	100 m	100 m	100 m
Network span	200 m	200 m	400 m	200 m

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


LANs

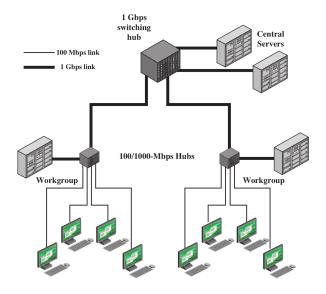
LAN Desigr

IEEE 802

Frame & Address

Example LAN Configuration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

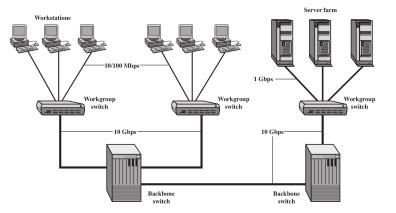

LANs

LAN Design

IEEE 802

Frame & Address

Example Gigabit Ethernet Configuration


LANs

LAN Design

IEEE 802

Frame & Address

Example 10 Gigabit Ethernet Configuration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LANs

LAN Design

IEEE 802

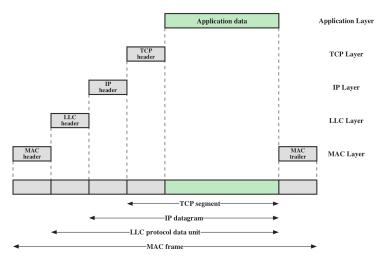
Frame & Address

Contents

LAN Design Elements

IEEE 802 LANs

IEEE 802.3 MAC Frames and Addresses

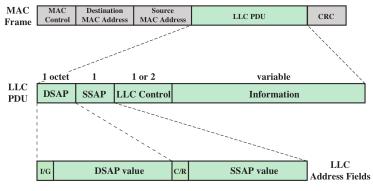

LANs

LAN Design

IEEE 802

Frame & Address

MAC Frame Compared to Other Layers


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

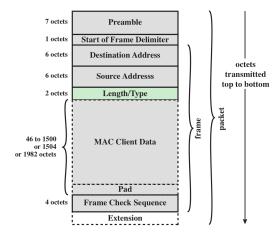
LANs

LAN Design

Frame & Address

LLC PDU in a Generic MAC Frame Format

I/G = Individual/Group C/R = Command/Response


- LLC traditionally provided link level flow and error control and multiplexing

IEEE 802.3 MAC Frame Format

IEEE 802

Frame & Address

- Typical maximum data size is 1500 Bytes
- 1st 8 bytes (preamble, delimiter) sometimes considered part of Physical layer

LANs

- LAN Design
- **IEEE 802**
- Frame & Address

IEEE 802 Addresses

- IEEE 802 standards use common IEEE 48-bit address format
- Globally unique (ideally)
 - First 24-bits assigned by IEEE to manufacturer http://standards.ieee.org/regauth/oui/
 - Second 24-bits assigned by manufacturer to device
- For simplicity, represented as 6 × 2 digit hexadecimal numbers
- Common in other standards: Bluetooth, ATM, FDDI, FibreChannel
- IEEE 64-bit address is new format: Firewire, ZigBee, IPv6

LANs

LAN Desigr

IEEE 802

Frame & Address

IEEE Addressing Example

Find the 48-bit IEEE address of your computer.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ