Digital Data

Bit Errors

Error Detection

Error Correction

Digital Data Communication Techniques

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L06, Steve/Courses/2012/s1/its323/lectures/digitaldata.tex, r2334

Digital Data

Bit Errors

Error Detection

Error Correction

Contents

Bit Errors

Error Detection

Error Correction

Digital Data

Bit Errors

Error Detection

Error Correction

Bit Errors

- In digital transmission systems errors occur when a bit is altered between transmission and reception
- Single-bit errors
 - Only one bit altered, surrounding bits not affected
 - Caused by random noise
- Error burst
 - A group of bits near each other are affected (in error)
 - Caused by impulse noise or fading
 - Effects of burst errors are greater at higher data rates

Require methods to detect errors, and correct where possible

Digital Data

Bit Errors

Error Detection

Error Correction

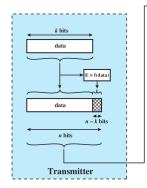
Contents

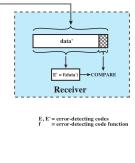
Bit Errors

Error Detection

Error Correction

Digital Data


Bit Errors


Error Detection

Error Correction

Error Detection

- Transmitter adds extra information to transmitted data, i.e. an error- detecting code
- Receiver recalculates the error-detecting code from received data, and compares to received error-detecting code
- If the same, good. If not, then error (in data or code).
 Still a chance that an error is not detected

ロットロットビット ヨー わへの

Digital Data

Bit Errors

Error Detection

Error Correction

Error Detection with Parity Check

- Odd-parity check: append parity bit to block of data; resulting set of bits has odd number of ones
- Receiver detects an error if receiver bits has unexpected number of ones (transmitter and receiver both know parity scheme being used)

Digital Data

Bit Errors

Error Detection

Error Correction

Parity Check Example

Assume character S is to be sent using odd-parity check. What is transmitted? What happens if the last bit is corrupted? What about the last two bits?

Digital Data

Bit Errors

Error Detection

Error Correction

Error Detection with Cyclic Redundancy Check

- Parity checks are not good when multiple bit errors occur
- CRC is a powerful, commonly used error detection scheme
- Approach:
 - k bits of data to send
 - ► Constant divisor known by transmitter/receiver, n - k + 1 bits
 - ▶ Append n k bits to data such that no remainder when divided by divisor
 - Transmit n bits
 - Receiver divides received n bits by divisor; if remainder, error detected
- Length and value of divisor is important for error detection capabilities (e.g. chance that one or more errors go undetected)
- CRC used in: Ethernet, HDLC, SATA, CDMA, PNG images, SD cards, ...

Digital Data

Bit Errors

Error Detection

Error Correction

Contents

Bit Errors

Error Detection

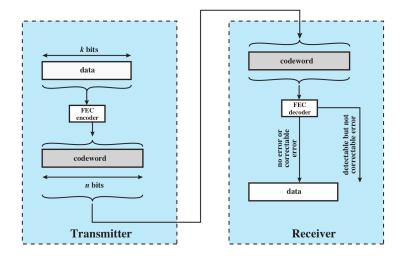
Error Correction

Digital Data

- Bit Errors
- Error Detection
- Error Correction

Error Correction

- What to do when error detected at receiver?
- Ask transmitted to send again, i.e. retransmit
 - Covered in Data Link Control Protocols lecture
 - Can be inadequate if link has high delay or many errors, e.g. wireless/satellite links
- Forward Error Correction: sender sends a codeword (instead of data); codeword chosen such that if error detected, receiver can correct the error without retransmission
- Depending on encoding scheme and pattern of errors, receiver may: detect and correct errors; detect, but not correct errors; not detect errors


Digital Data

Bit Errors

Error Detection

Error Correction

Error Correction

Digital Data

Bit Errors Error Detec

Error Correction

FEC with Hamming Distance

Hamming Distance

- Number of bits of two *n*-bit sequences that differ
- ▶ $v_1 = 011011$, $v_2 = 110001$: d(v1, v2) = 3

Example FEC Encoder

> 2-bits of data mapped to 5-bit codeword (k = 2, n = 5)

Data	Codeword
00	00000
01	00111
10	11001
11	11110

 If received codeword invalid, assume valid codeword that is unique minimum Hamming distance from received codeword was transmitted Conversion (Conversion)

Digital Data

Bit Errors

Error Detection

Error Correction

Error Correction Example 1

Data to send: 01; no transmission error

Digital Data

Bit Errors

Error Detection

Error Correction

Error Correction Example 2

Data to send: 01; 3rd bit transmitted is in error

Digital Data

Bit Errors

Error Detection

Error Correction

Error Correction Example 3

Data to send: 01; 1st and 4th bit transmitted in error

Digital Data

Bit Errors

Error Detection

Error Correction

Performance of Error Detection/Correction

- Aim to detect/correct as many errors as possible
- But error detection/correction require extra bits to be sent
- k bits of useful data; n bits transmitted; efficiency $\frac{k}{n}$
- Tradeoff: for a given amount of data, k bits
 - Increase n, more errors detected/corrected (GOOD)

Increase n, lower efficiency of transmission (BAD)