Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

Data Transmission

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L03, Steve/Courses/2012/s1/its323/lectures/transmission.tex, r2334

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Data Transmission

Terminology

Time Domain Frequency Domain Analog and Digital Impairments Capacity

Contents

Transmission Terminology

Fime Domain Concepts

Frequency Domain Concepts

Analog and Digital Data Transmission

Transmission Impairments

Channel Capacity

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Data Transmission

Terminology

- Time Domain Frequency Domain Analog and Digital Impairments
- Capacity

Transmission Terminology

- Data transmission occurs between a transmitter and receiver via some medium
- Communication is in form of electromagnetic waves
- Medium may be:

Unguided: wireless, e.g. air, water, vacuum

- Configuration may be:
 - Point-to-point: only 2 devices share medium Multipoint: more than 2 devices share medium
- Direction of communications may be:

Simplex: one direction, e.g. television Half duplex: either direction, but only one way at a time, e.g. police radio Full duplex: both directions at the same time, e.g. telephone

Data Transmission

Terminology

Time Domain Frequency Domai Analog and Digit:

Impairments

Capacity

Frequency, Spectrum and Bandwidth

- Transmitter generates electromagnetic signals, which is transmitted over medium
- Electromagnetic signals represent data
- Electromagnetic signal consists of one or more component signals
- Electromagnetic signals can be viewed in two domains: Time domain: signal intensity vs time
 Frequency domain: Peak signal intensity of component vs frequency

Data Transmission

Terminology

Time Domain

Frequency Domain Analog and Digital Impairments Canacity

Contents

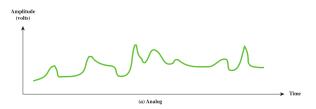
Transmission Terminology

Time Domain Concepts

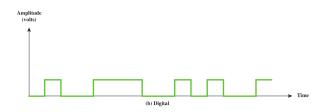
Frequency Domain Concepts

Analog and Digital Data Transmission

Transmission Impairments


Channel Capacity

・ロト・日本・日本・日本・日本・日本・日本

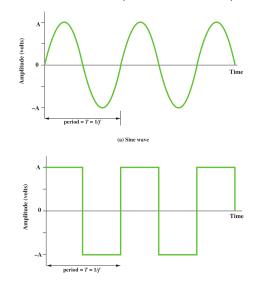

ITS323 Data Transmission

Analog and Digital Waveforms

Analog signal varies in continuous manner over time

Digital signal maintains constant level for some period then changes to another constant level, in a discrete manner =

Data Transmission


Terminology

Time Domain

Frequency Domain Analog and Digital Impairments

Examples of Periodic Signals

Any signal is either periodic (the following two) or aperiodic

(b) Square wave

지니 지 지나에 지 는 지 세 문 🕨

200

э

Data Transmission

Terminology

Time Domain

- Frequency Domain
- Analog and Digita
- Impairments
- Capacity

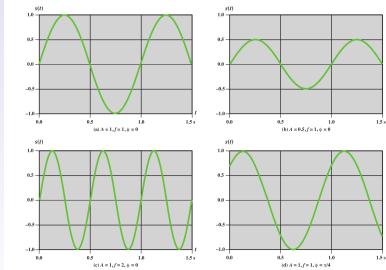
Sinusoid Signals

Sine wave is the fundamental periodic signal

$$s(t) = A\sin\left(2\pi ft + \phi\right)$$

- Communication signals are made up of sinusoid signals Peak amplitude, A: maximum strength of signal over time [volts]
 Frequency, f: rate at which signal repeats [cycles per second or Hertz]
 - Phase, ϕ : relative position signal has advanced (or shifted) to some origin (usually 0) [radians]
- Other parameters:

Period, T: time for one repetition or cycle; T = 1/fWavelength, λ : distance occupied by one cycle; $\lambda = c/f$ where c is speed of light ($\approx 3 \times 10^8 \text{m/s}$)


Data Transmission

Terminology

Time Domain

Frequency Domain Analog and Digital Impairments Capacity

Sinusoid Signal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data Transmission

Terminology Time Domain Frequency Domain Analog and Digital Impairments Capacity

Contents

Transmission Terminology

ime Domain Concepts

Frequency Domain Concepts

Analog and Digital Data Transmission

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Transmission Impairments

Channel Capacity

Data Transmission

- **Frequency Domain**

Frequency Domain Concepts

Communication signals are composed of many component sinusoid signals at different frequencies, e.g.

 $s(t) = (4/\pi) \times [\sin(200\pi t) + (1/3)\sin(600\pi t)]$

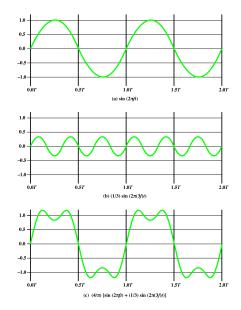
• Or, if f = 100Hz:

 $s(t) = (4/\pi) \times [\sin(2\pi ft) + (1/3)\sin(2\pi(3f)t)]$

- When all frequency components of signal are integer multiple of one frequency, that one is called fundamental frequency; the others are harmonic frequencies
- Period of resulting signal is equal to period of fundamental frequency component
- By adding together sine waves with different amplitudes, frequencies and phases, any desired communications signal can be constructed ▲■▶ ▲■▶ ▲■▶ ■ のへの

ITS323 Data Transmission

Addition of Frequency Components


Terminology Time Domain

Frequency Domain

Analog and Digital

Impairments

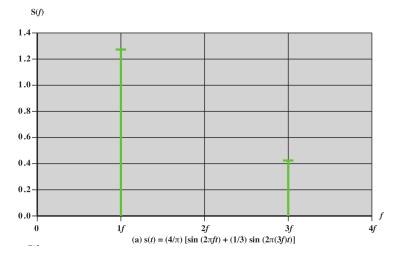
Capacity

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Data Transmission

Terminology

Time Domair

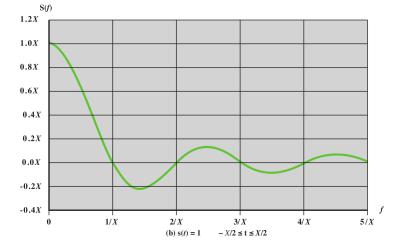

Frequency Domain

Impairments

Capacity

Frequency Domain Representations

Frequency domain function, S(f), specifies peak amplitude of component frequencies of signal



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Data Transmission

Frequency Domain Representations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data Transmission

Terminology

Time Domain

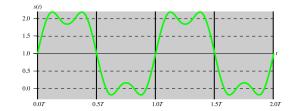
- Frequency Domain
- Analog and Digital

Impairments

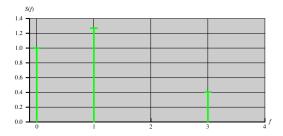
Capacity

Spectrum, Bandwidth and Data Rate

- Spectrum of a signal is range of frequencies it contains
- Absolute bandwidth is width of spectrum
- If signal contains component with zero frequency, signal has dc component
- Many signals have infinite absolute bandwidth, but most of the signal energy is contained in narrow band of frequencies; called Effective Bandwidth or just Bandwidth
- In practice, transmission system can only carry limited band of frequencies


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bandwidth limit of system determines data rate


Signal with dc Component

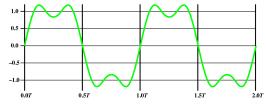
Data Transmission

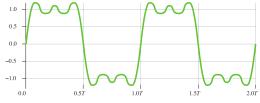
- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

(a) $s(t) = 1 + (4/\pi) [\sin (2\pi ft) + (1/3) \sin (2\pi (3f)t)]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

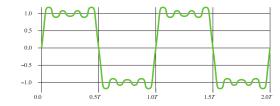
ITS323 Data Transmission

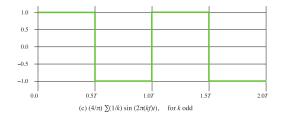

Frequency Components of Square Wave: (a)


Analog and Digita

Impairments

Capacity


(c) $(4/\pi) [\sin (2\pi ft) + (1/3) \sin (2\pi (3f)t)]$


(a) $(4/\pi) [\sin (2\pi ft) + (1/3) \sin (2\pi (3f)t) + (1/5) \sin (2\pi (5f)t)]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Frequency Components of Square Wave: (b)

(b) $(4/\pi) [\sin (2\pi ft) + (1/3) \sin (2\pi (3f)t) + (1/5) \sin (2\pi (5f)t) + (1/7) \sin (2\pi (7f)t)]$

(日)、

э.

Data Transmission

- Time Domain
- **Frequency Domain**
- Analog and Digital
- Impairments
- Capacity

Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

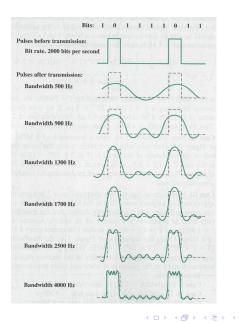
Example: Bandwidth and Data Rate

Digital transmission system can transmit signals with bandwidth of 4MHz. What is the maximum data rate? What if bandwidth increased to 8MHz?

Effect of Bandwidth on a Digital Signal

Data Transmission

Terminology


Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

E ୬९୯

Data Transmission

Terminology

Time Domair

- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Tradeoffs

Bandwidth

- Digital signal has infinite bandwidth; transmission systems impose limits on bandwidth of transmitted signals
- Bandwidth is a limited resource
- Greater the bandwidth, greater the cost

Data Rate

- Digital data is approximated by signal of limited bandwidth
- Greater the bandwidth, greater the data rate

Accuracy

► Receiver must be able to interpret received signal, even with transmission impairments

Data Transmission

Time Domain Frequency Domain Analog and Digital Impairments Contents

Transmission Terminology

Fime Domain Concepts

Frequency Domain Concepts

Analog and Digital Data Transmission

Transmission Impairments

Channel Capacity

・ロト・「聞・ ・ヨト・ ヨー うくぐ

Data Transmission

Terminology

- Time Domain
- Frequency Domain

Analog and Digital

- Impairments
- Capacity

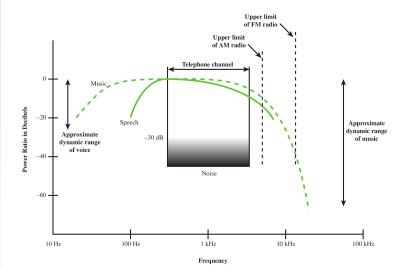
Analog and Digital ...

Data

- Entities that convey meaning or information
- Analog data take continuous values over time, e.g. voice, video, sensor data
- Digital data take discrete values, e.g. text, integers

Signals

Electric or electromagnetic representations of data


Transmission

 Communication of data by propagating and processing signals

ITS323 Data Transmission Terminology Time Domain Frequency Domain Analog and Digital

Capacity

Example of Analog Data: Audio Acoustic Spectrum of Speech and Music

ITS323 Data Transmission

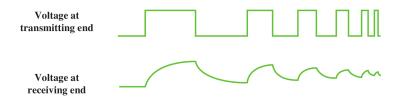
Example of Digital Data: Text

Last 4 bits

Time Domain			
Frequency Domain			
Analog and Digital			

Impairments

Capacity

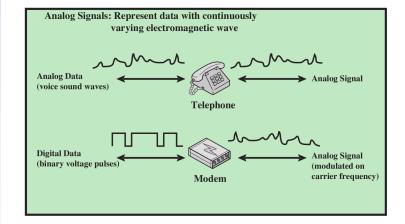

	First 3 bits							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	"	р
0001	SOH	DC1	!	1	А	Q	а	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	Х	h	х
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	Ι	
1101	CR	GS	-	=	М]	m	}
1110	SO	RS	•	>	Ν	۸	n	~
1111	SI	US	/	?	0	_	0	DEL

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Analog vs Digital Signals

- Electric or electromagnetic representations of data
- Analog signal is continuously varying electromagnectic wave
- Digital signal is sequence of voltage pulses
- Digital signals generally cheaper and less susceptible to interference
- Digital signals suffer more from attenuation


Data Transmission

Time Domain Frequency Domain Analog and Digital

Impairments

Capacity

Analog Signaling of Analog and Digital Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ITS323 Digital Signaling of Analog and Digital Data Data Transmission **Digital Signals: Represent data with sequence** of voltage pulses rmr Analog and Digital **Digital Signal Analog Data** Codec Digital Data ◀ **Digital Signal** Digital Transceiver

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Data Transmission

Analo

$\label{eq:analog} Ananlog/Digital \ Signals \ and \ Data$

ninology		Analog Signal	Digital Signal
e Domain uency Domain og and Digital sirments	Analog Data	Two alternatives: (1) signal occupies the same spectrum as the analog data; (2) analog data are encoded to occupy a different portion of spectrum.	Analog data are encoded using a codec to produce a digital bit stream.
acity	Digital Data	Digital data are encoded using a modem to produce analog signal.	Two alternatives: (1) signal consists of two voltage levels to represent the two binary values; (2) digital data are encoded to produce a digital signal with desired properties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Analog vs Digital Transmission

- Analog transmission: analog signal is propagated through amplifiers
- Digital transmission: analog or digital signals are propagated through repeaters
- Digital transmission is preferred technology today: digital equipment, efficiently combine signals from different sources; security; repeaters can give more accurate data transmission

Data Transmission

Terminology

- Time Domain
- Frequency Domain

Analog and Digital

Impairments

Capacity

Treatment of Signals in Analog/Digital Transmission

	Analog Transmission	Digital Transmission
Analog Signal	Is propagated through amplifiers; same treatment whether signal is used to represent analog data or digital data.	Assumes that the analog signal represents digital data. Signal is propagated through repeaters; at each repeater, digital data are recovered from inbound signal and used to generate a new analog outbound signal.
Digital Signal	Not used	Digital signal represents a stream of 1s and 0s, which may represent digital data or may be an encoding of analog data. Signal is propagated through repeaters; at each repeater, stream of 1s and 0s is recovered from inbound signal and used to generate a new digital outbound signal.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Data Transmission

Time Domain Frequency Domair Analog and Digita

Impairments

Capacity

Contents

Transmission Terminology

Fime Domain Concepts

Frequency Domain Concepts

Analog and Digital Data Transmission

Transmission Impairments

Channel Capacity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Transmission Impairments

Signal received may be different from signal transmitted causing:

- Analog: degradation of signal quality
- Digital: bit errors
- Most significant impairments:
 - 1. Attenuation and attenuation distortion
 - 2. Delay distortion
 - 3. Noise

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital

Impairments

Capacity

- Signal strength reduces as a function of distance
- Designing a transmission system:

Attenuation

1. Received signal has sufficient strength to be interpreted by receiver electronics

- 2. Received signal is significantly higher than received noise to avoid errors
- Attenuation distortion is a problem for analog signals:
 - Attenuation is different at different frequencies
 - Received signal has different strengths
 - Apply equalization to overcome

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Delay Distortion

- Component signals with different frequencies have different propagation delay through cable
- Some signal components representing a bit interfere with neighbour bits: intersymbol interference

Apply equalization to overcome

Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

Noise

Thermal Noise

- Due to thermal agitation of electrons
- Present in all transmission devices and media
- Function of temperature:

$$N = kTB$$

where k = Boltzmann's constant = 1.38×20^{-23} J/K, B is bandwidth and T is temperature in kelvins

Intermodulation Noise

 Caused when signals of different frequencies share the same medium

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

Noise

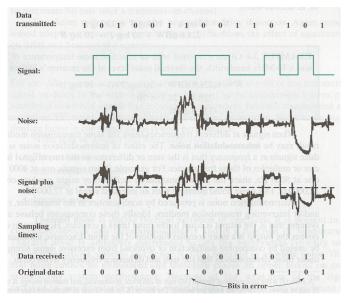
Crosstalk

Unwanted coupling of different signals

Impulse Noise

 Short peak of noise, e.g. lightning, electrical disturbances, flaws in communications system

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()


Data Transmission

Terminology Time Domain Frequency Doma Analog and Digi

Impairments

Capacity

Effect of Noise on a Digital Signal

(日)

Data Transmission

Time Domain Frequency Domai

Impairments

Capacity

Contents

Transmission Terminology

Time Domain Concepts

Frequency Domain Concepts

Analog and Digital Data Transmission

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Transmission Impairments

Channel Capacity

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Channel Capacity

- Channel capacity: maximum data rate at which data can be transmitted over a given communication channel
 Relate:
 - ▶ Data rate, C [bits per second]
 - Bandwidth, B [Hertz]
 - Noise
 - Error rate
- Two theoretical models:
 - Nyquist Capacity: assumes noise-free environment Shannon Capacity: considers noise

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Data Transmission

Terminology

Time Domain Frequency Domain

Analog and Digi

Impairments

Capacity

Nyquist Capacity

- Assumes channel that is noise free
- Given a bandwidth of B, the highest signal rate is 2B
- Single signal element may carry more than 1 bit; signal with M levels may carry log₂ M bits

$$C = 2B \log_2 M$$

Tradeoffs:

- Increase the bandwidth, increases the data rate
- Increase the signal levels, increases the data rate
- ► Increase the signal levels, harder for receiver to interpret the bits (practical limit to M)

Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

Example of Nyquist Capacity

A telephone system with modem allows bandwidth of 3100 Hz. What is the maximum data rate?

Data Transmission

- Terminology
- Time Domain
- Frequency Domain
- Analog and Digital
- Impairments
- Capacity

Shannon Capacity

- With noise, some bits may be corrupted; higher data rate, more bits corrupted
- Increasing signal strength overcomes noise
- Signal-to-noise ratio:

$$SNR = rac{signalpower}{noisepower}$$

Shannon capacity:

$$C = B \log_2 \left(1 + SNR\right)$$

- Tradeoffs:
 - Increase bandwidth or signal power, increases data rate
 - Increase of noise, reduces data rate
 - Increase bandwidth, allows more noise
 - Increase signal power, causes increased intermodulation noise

Data Transmission

Terminology

Time Domain

Frequency Domain

Analog and Digital

Impairments

Capacity

Example of Shannon and Nyquist Capacity

A channel uses spectrum of between 3MHz and 4MHz, with $SNR_{dB} = 24dB$. How many signal levels are required to achieve Shannon capacity?