ITS323 - Quiz 2 Answers

Name: \qquad
ID: \qquad Mark: \qquad (out of 10)

Question 1 [4 marks]
Consider a network with two links:
Computer ----------------- Router ------------------ Server

- Link 1: full-duplex; $10 / 1 \mathrm{Mb} / \mathrm{s} ; 10 / 23 \mu$ s propagation time
- Link 2: full-duplex; $1 / 100 \mathrm{Mb} / \mathrm{s} ; 13 / 6 \mu$ s propagation time

On the Computer, you click on a link in a browser which triggers a 100 Byte message to be sent to the Server. The server processes the request and sends a 1000 Byte response. What is the response time, that is, the time from when you click on a link until the response is received? Assume all processing and queuing delays are 0 , except a $10 \mu \mathrm{~s}$ qls ueuing delay at the Router. You must show calculations.

Answer

Recall that transmission delay = message size / data rate
In the Computer to Server direction (message size is 100 Bytes):
Link 1 transmission delay $=100 \mathrm{Byte} / 10 \mathrm{Mb} / \mathrm{s}=80 \mu \mathrm{~s}$
Link 1 propagation delay $=10 \mu \mathrm{~s}$
Router queuing delay $=10 \mu \mathrm{~s}$
Link 2 transmission delay = $100 \mathrm{Byte} / 1 \mathrm{Mb} / \mathrm{s}=800 \mu \mathrm{~s}$
Link 2 propagation delay $=13 \mu \mathrm{~s}$
In the Server to Computer direction (message size is 1000 Bytes):
Link 1 transmission delay $=1000 \mathrm{Byte} / 10 \mathrm{Mb} / \mathrm{s}=800 \mu \mathrm{~s}$
Link 1 propagation delay $=10 \mu \mathrm{~s}$
Router queuing delay $=10 \mu \mathrm{~s}$
Link 2 transmission delay $=1000 \mathrm{Byte} / 1 \mathrm{Mb} / \mathrm{s}=8000 \mu \mathrm{~s}$
Link 2 propagation delay $=13 \mu \mathrm{~s}$

Total delay (response time) $=80+10+10+800+13+800+10+10+8000+13=9746 \mu \mathrm{~s}$
The alternative data (link 1: $1 \mathrm{Mb} / \mathrm{s}, 23 \mu \mathrm{~s}$; Link 2: $100 \mathrm{Mb} / \mathrm{s} ; 6 \mu \mathrm{~s}$): $8966 \mu \mathrm{~s}$

Question 1 [4 marks]
Consider a network with two links:

- Link 1: 12/24km, 5/20Mb/s
- Link 2: 6/12km

If a message of 1000/2000 bits has to be sent from A to C with a maximum end-to-end delay of $295 / 430 \mu \mathrm{~s}$, then what is the minimum data rate required for link 2? You may assume no processing delays, and a queuing delay of $10 \mu \mathrm{~s}$ at B. Also, the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. You must show calculations.

Answer

Link 1 transmission delay $=1000$ bits $/ 5 \mathrm{Mb} / \mathrm{s}=200 \mu \mathrm{~s}$
Link 1 propagation delay $=12000 \mathrm{~m} / 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=40 \mu \mathrm{~s}$
B queuing delay $=10 \mu \mathrm{~s}$
Link 2 propagation delay $=6000 \mathrm{~m} / 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=20 \mu \mathrm{~s}$
Total delay $=270+$ Link2Transmission $<295 \mu \mathrm{~s}$
Therefore Link 2 transmission delay $=25 \mu \mathrm{~s}=1000$ bits $/ \mathrm{XMb} / \mathrm{s}$
Therefore Link 2 data rate $=40 \mathrm{Mb} / \mathrm{s}$
The alternative data: $10 \mathrm{Mb} / \mathrm{s}$

Question 2 [3 marks]
a) Draw a plot of the following signal in the frequency domain. [2 marks]

$$
\begin{aligned}
& s(t)=10 \sin (60 \pi t)+5 \sin (120 \pi t)+2 \sin (200 \pi t) \\
& s(t)=40 \sin (180 \pi t)+5 \sin (360 \pi t)+2 \sin (400 \pi t)+\sin (500 \pi t)
\end{aligned}
$$

Answer

b) What is the absolute bandwidth of the above signal? [1 mark]

Answer
 70 Hz
 160 Hz

Question 2 [2 marks]
Consider the signal $s(t)$:

$$
\begin{aligned}
& s(t)=15 \sin \left(10 \times 10^{6} \pi t\right)+5 \sin \left(30 \times 10^{6} \pi t\right)+3 \sin \left(50 \times 10^{6} \pi t\right) \\
& s(t)=105 \sin \left(3 \times 10^{4} \pi t\right)+35 \sin \left(9 \times 10^{4} \pi t\right)+21 \sin \left(1.5 \times 10^{5} \pi t\right)+15 \sin \left(2.1 \times 10^{5} \pi t\right)
\end{aligned}
$$

a) What is the period of the $s(t)$? [1 mark]

Answer

Fundamental frequency is 5 Mhz , therefore period is $0.2 \mu \mathrm{~s}$
(Alternative: frequency is 15000 Hz , period is $66 \mu \mathrm{~s}$)
b) What is the absolute bandwidth of $s(t)$? [1 mark]

Answer

Minimum frequency component at 5 Mhz and maximum at 25 Mhz : $\mathrm{BW}=20 \mathrm{MHz}$
(Alternative: 90kHz)

Question 3 [3 marks]
A receiver receives a $4 \mathrm{MHz} / 200 \mathrm{kHz}$ signal with power $150 \mathrm{~mW} / 310 \mu \mathrm{~W}$.
a) If the channel also contains noise of $10 \mathrm{~mW} / 10 \mu \mathrm{~W}$, what is the theoretical data rate possible? [2 marks]

Answer

Using Shannon capacity equation, Data rate $=\mathrm{B} \log _{2}(1+\mathrm{SNR})$
$B=4 \mathrm{MHz}$, Signal $=150 \mathrm{~mW}$, Noise $=10 \mathrm{~mW}$, SNR $=15$, Data rate $=16 \mathrm{Mb} / \mathrm{s}$
$B=200 \mathrm{kHz}$, Signal $=310 \mu \mathrm{~W}$, Noise $=10 \mu \mathrm{~W}, \mathrm{SNR}=31$, Data rate $=1 \mathrm{Mb} / \mathrm{s}$
b) Assuming the noise cannot be controlled, explain how can the data rate be increased, without increasing the bandwidth. [1 mark]

Answer

Increase the transmit power, thereby increasing receive power and SNR.

Question 3 [3 marks]
An encoding scheme maps $3 / 4$ bits of digital data into one signal element.
a) In a noise-free channel with a bandwidth of $200 \mathrm{KHz} / 10 \mathrm{MHz}$, what is the maximum theoretical data rate possible? [2 marks]

[^0]to represent any combination of bits. That is, there are $\mathrm{M}=2^{n}$ possible signal levels.
Using Nyquist capacity equation, Data rate $=2 \mathrm{Blog}_{2}(\mathrm{M})$
$\mathrm{n}=3, \mathrm{M}=8, \mathrm{BW}=200 \mathrm{KHz}$, Data rate $=1200 \mathrm{~Kb} / \mathrm{s}$
$\mathrm{n}=4, \mathrm{M}=16, \mathrm{BW}=10 \mathrm{MHz}$, Data rate $=80 \mathrm{Mb} / \mathrm{s}$
b) Explain how can the data rate be increased, without increasing the bandwidth. [1 mark]

Answer

Increase the number of levels, e.g. more bits per signal element.
c) What is a disadvantage of increasing the data rate with the approach you suggest in part (b)? [1 mark]

Answer

Increase the number of errors.

Extra Question for Quizzes f, \mathbf{g} and \mathbf{h}

Question 4 [4 marks]
A terrestrial microwave communications system is created to deliver $1 / 2 / 2 \mathrm{~KB}$ emergency warning messages from a transmission tower in town A to a receiver tower in town B. Because of the large distance between A and B, 5/4/3 repeater towers are needed between the two towns. Each tower uses the same equipment (for transmitter and receiver) with specifications as follows:

Transmit power: 10W Antenna Gain: 25dBi Receive sensitivity: -31/-37.5/35dBm

Data rate: $10 \mathrm{Mb} / \mathrm{s} \quad$ Frequency: 30 MHz
The time to deliver a warning message from A to B is $5.4 / 9 / 7 \mathrm{~ms}$.
What is the distance between town A and B ?

Answer

Consider the total delay to deliver the message, D. If we assume there is no (or very little) processing and queuing delays, then the total delay should be the sum of the transmission and propagation delay for each link. There are $\mathrm{R}+1$ transmissions, where R is the number of repeaters. So the total delay is:
D $=$ Distance $/\left(3 \times 10^{8}\right)+(R+1) *$ MessageSize / DataRate
As we know the message size, data rate, number of repeaters (R) and total delay (D), we can determine the distance between A and B.

Case 1:
$5.4 \mathrm{~ms}=$ Distance $/\left(3 \times 10^{8}\right)+6 *(8 * 1000) / 10 \times 10^{6}$; therefore distance $=180,000 \mathrm{~m}=180 \mathrm{~km}$
Case 2:
$9 \mathrm{~ms}=$ Distance $/\left(3 \times 10^{8}\right)+5 *(8 * 2000) / 10 \times 10^{6}$; therefore distance $=300,000 \mathrm{~m}=300 \mathrm{~km}$

Case 3:

$7 \mathrm{~ms}=$ Distance $/\left(3 \times 10^{8}\right)+4 *(8 * 2000) / 10 \times 10^{6}$; therefore distance $=180,000 \mathrm{~m}=180 \mathrm{~km}$
Another approach is to consider the path loss, and assuming free space path loss, determine the distance between transmitter and receiver. However we do not know the Received Power at each receiver. We only know the Receiver Sensitivity, which is the minimum Receive Power that the receiver can understand. It does not mean that the receive has to receive at this power level; it is likely (and true in this question) that the receiver receives at a power much greater than the receiver sensitivity. Therefore we do not have enough information to use the free-space path loss model.

[^0]: Answer
 If there are n bits of data mapped to a signal element, then 2^{n} different signal elements are needed

