
Transport Protocols

Dr Steve Gordon
ICT, SIIT

ITS 323 - Transport Protocols 2

Contents
• Overview of Transport Protocols
• Addressing and Multiplexing

– Common to TCP and UDP

• UDP
• TCP

– Segments and Sequence Numbers
– Connection Management
– Reliability
– Flow Control
– Congestion Control

ITS 323 - Transport Protocols 3

Where Are We?

Physical

Data Link

Network

Transport

ApplicationUser
Process

Operating
System

NIC

Many different types of networks
LANs/WANs: Ethernet, ADSL, ATM,
Frame Relay, SDH/SONET, PDH,
Telephone network, Satellite, Wireless
LAN, Mobile Phone, USB, Firewire, …

IP: joins the networks together, and
finds paths from source to destination
interfaces

Send data between source and
destination processes/applications

ITS 323 - Transport Protocols 4

Host-to-Host Communications
Transport layer deals with sending data between processes/applications on source
host and destination host. Often referred to as End-to-End communications.

Physical

Data Link

Network

Transport

Application

Physical

Data Link

Network

Transport

Application

PHY

DL

PHY

DL

Network

My Computer SIIT Web/Email
Server

My Broadband
Router

00:17:9A:36:F7:65 00:13:49:6C:E3:B3

Network

192.168.1.1

37473 37474

192.168.1.3 203.131.209.77

80 25

www.siit.tu.ac.th steve@siit.tu.ac.th

00:13:49:B5:E7:22

125.75.21.19

steve@sandilands.info

00:12:37:BD:6F:29

There can be any number
of routers in this network

ITS 323 - Transport Protocols 5

Transport Protocols
• Transport protocols can be connection-oriented or connection-less

– Connection-less: send data from a source process to a destination
process usually with no concern about reliability, flow control. Simple.

• IP is a connection-less network layer protocol
• UDP is a connection-less transport layer protocol. Very simple.

– If your application wants to send data fast and can cope with errors, then use
UDP

– Connection-oriented
• Most transport protocols are connection-oriented

– TCP is a connection-oriented transport layer protocol.
• Include functions for setting up connection, error control, flow control,

addressing. Very complex.
• Since IP is connection-less, connection-oriented transport protocols are very

important:
– Provide the reliability that IP does not provide
– Most applications need reliability, and hence use TCP

– Our focus is on Internet technologies, so:
• We will describe TCP and then quickly describe UDP

ITS 323 - Transport Protocols 6

Transport Protocols
• Internet transport protocols (standardised by the IETF)

– Transmission Control Protocol (TCP)
– User Datagram Protocol (UDP)
– Stream Control Transmission Protocol (SCTP)
– Internet Control Message Protocol (ICMP) (not a ‘normal’ transport protocol used

by applications, but is at transport layer)

• Other transport protocols (standardised and experimental)
– OSI: TP-0 to TP-4
– Transaction-based: T/TCP, WAP (transaction layer)
– IBM SNA: NetBEUI
– AppleTalk: ATP
– Secure transport protocols
– Transport protocols for high-speed networks
– Transport protocols for wireless networks

ITS 323 - Transport Protocols 7

Transport Protocol Services
• The main functions of a transport protocol
• Common to both TCP and UDP

– Addressing
– Multiplexing

• Specific to TCP (and other connection-oriented transport protocols)
– Connection Management
– Error control
– Flow control
– Congestion control

• We will assume that the network layer (IP) is unreliable:
– Datagrams can be lost (sent, but not arrive at destination)
– Datagrams can arrive, but with errors
– Datagrams can arrive in a different order than they were sent
– Datagrams can be duplicated (one datagram sent, two copies arrive)

Addressing and Multiplexing

ITS 323 - Transport Protocols 9

Internet Applications
• Most Internet applications follow a client/server model of initiating

communication:
– Client initiates communication
– Server waits for client to initiate communication
– Once the communication is initiated, data can flow in both directions

(client to server and server to client)

• Addressing
– For client to initiate communication to server, the client needs to know

address of server:
• IP address is used to identify network interface of host
• Protocol number is used to identify transport protocol on a host
• Port number is used to identify application protocol on a host

ITS 323 - Transport Protocols 10

Multiple Applications, Multiple Transport
Protocols

A host may have multiple Internet applications running at the same time,
and be using multiple transport protocols

ITS 323 - Transport Protocols 11

At the Destination Host …
• The IP software at the Destination Host receives an IP datagram

– How does IP know which transport protocol the Data is destined to?
• (Remember, IP does not “look” at the Data)
• Protocol field of the IP header

– 6 = TCP; 17 = UDP; 1 = ICMP, … http://www.iana.org/assignments/protocol-numbers/

• IP sends to Data, as a “segment”, to the transport protocol

• The Transport protocol software receives the segment from IP
– How does the transport protocol know which application protocol the Data is

destined to?
• Destination port field in Transport Protocol header

– 80 = Web server; 25 = Email server; … http://www.iana.org/assignments/port-numbers

• Transport protocol sends Data, as a “message”, to application protocol

DataIPIP

DataTraTraSegment

http://www.iana.org/assignments/protocol-numbers/
http://www.iana.org/assignments/port-numbers

ITS 323 - Transport Protocols 12

Multiplexing
• Multiplexing at the Network layer:

– IP uses the Protocol field to identify the transport protocol being used
– IP at source host sets the Protocol field, allowing IP at destination host to deliver

to correct transport protocol
– A host only needs one instance of a particular transport protocol

• E.g. only one instance of TCP running on host
• Hence, Protocol field sufficient to identify transport protocol at source and destination

• Multiplexing at Transport layer:
– TCP/UDP use Port number fields to identify the application protocol being used
– TCP/UDP at source host sets the Port number field based on the application that

sent the Data, as well as the intended destination application
– A host may have multiple instances of application protocols

• E.g. a host running multiple web browsers; host running an email server and an email
client

• May have multiple instances on source host communicating with one instance on
destination host

• Hence, require Source Port and Destination Port

ITS 323 - Transport Protocols 13

Port Numbers
• Ports and port numbers represent the end-points of the transport

protocol communications
– Processes are the actual end-points of the communication; ports

provide abstract view of processes
• IANA maintains list of port numbers, dividing them based on types of

applications:
– Well Known Ports: 0 – 1023

• Typically used for common Internet servers
• E.g. Web server (80), Email server (25), FTP Server (21), Telnet (23)

– Registered Ports: 1024 – 49151
• Often used for Internet servers (some operating systems also use for clients)

– Dynamic (private, ephemeral) Ports: 49152 – 65535
• Not to be assigned to specific applications/clients
• Typically randomly chosen by operating system for client applications

• Communication using particular transport protocol can be uniquely
identified by:
– Source IP address, Source Port number, Destination IP address,

Destination Port number

User Datagram Protocol (UDP)

ITS 323 - Transport Protocols 15

User Datagram Protocol
• UDP is a unreliable connection-less transport protocol

– Takes Data from the application layer, attaches a UDP header, and
delivers to IP

– UDP provides multiplexing and checksum over the packet
– UDP segments may be: lost, arrive out of order, duplicated, arrive in

error
• If you write an application that uses UDP and you want reliable data transfer,

then you must ensure the application provides reliability!
• UDP is simple (standard describes it in 4 pages)
• UDP is used by applications which:

– Require simplicity
• Trivial File Transfer Protocol (TFTP), network management protocols (must

be implemented in embedded devices)
– Don’t require reliability

• Voice and video applications (can tolerate data loss), network management
(e.g. provide status update every second)

– Require low overheads
• Voice and video applications (require low delay)

ITS 323 - Transport Protocols 16

UDP Segment
• UDP segment (or datagram) contains 8 byte header plus Data
• Length is count of bytes in header plus Data

– Minimum: 8 bytes Maximum: 65535 bytes
• Checksum calculated over:

– UDP Header
– UDP Data
– Some parts from IP header such as Source and Destination IP address, IP

protocol type code (17 for UDP)

8
by

te
s

ITS 323 - Transport Protocols 17

Example UDP Datagram
Internet Protocol, Src: 10.10.1.237 (10.10.1.237), Dst: 10.10.1.1 (10.10.1.1)

Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.... ..0. = ECN-Capable Transport (ECT): 0
.... ...0 = ECN-CE: 0

Total Length: 330
Identification: 0xc62b (50731)
Flags: 0x00

0... = Reserved bit: Not set
.0.. = Don't fragment: Not set
..0. = More fragments: Not set

Fragment offset: 0
Time to live: 128
Protocol: UDP (0x11)
Header checksum: 0x5c76 [correct]

[Good: True]
[Bad : False]

Source: 10.10.1.237 (10.10.1.237)
Destination: 10.10.1.1 (10.10.1.1)

User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
Source port: bootpc (68)
Destination port: bootps (67)
Length: 310
Checksum: 0xf08e [correct]

[Good Checksum: True]
[Bad Checksum: False]

Bootstrap Protocol

U
D

P
H

eader
U

D
P

D
ata

IP
 H

eader
IP

 D
ata

18

Example UDP Datagram (Hex Bytes)
0000 00 50 ba 4c 6b 45 00 17 31 5a e5 89 08 00 45 00 .P.LkE..1Z....E.

0010 01 4a c6 2b 00 00 80 11 5c 76 0a 0a 01 ed 0a 0a .J.+....\v......

0020 01 01 00 44 00 43 01 36 f0 8e 01 01 06 00 44 17 ...D.C.6......D.

0030 f7 05 00 00 00 00 0a 0a 01 ed 00 00 00 00 00 00

0040 00 00 00 00 00 00 00 17 31 5a e5 89 00 00 00 001Z......

0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0110 00 00 00 00 00 00 63 82 53 63 35 01 03 3d 07 01 c.Sc5..=..

0120 00 17 31 5a e5 89 0c 09 44 72 2d 47 6f 72 64 6f ..1Z....Dr-Gordo

0130 6e 51 0d 00 00 00 44 72 2d 47 6f 72 64 6f 6e 2e nQ....Dr-Gordon.

0140 3c 08 4d 53 46 54 20 35 2e 30 37 0b 01 0f 03 06 <.MSFT 5.07.....

0150 2c 2e 2f 1f 21 f9 2b ff ,./.!.+.

ITS 323 - Transport Protocols 19

Example: UDP-based Application
• Source Host: 63.14.102.5
• Simple Client Application

For (i=1; i<=5; i++) {
data = “hello” + i;
send(data, 203.16.3.4, 40123);

}
Exit;

• Send 5 pieces of data using
UDP to destination

• Destination Host: 203.16.3.4
• Simple Server Application

While (true) {
data = receive(40123);
printf(“$s”,data);

}
Exit;

• Loop forever, when a UDP
datagram is received, print the
data

Transmission Control Protocol (TCP)

ITS 323 - Transport Protocols 21

Transmission Control Protocol
• The most commonly used transport protocol today

– Almost all Internet applications that require reliability use TCP
• Web browsing, email, file sharing, instant messaging, file transfer, database

access, proprietary business applications, some multimedia applications (at
least for control purposes), …

• TCP provides a reliable, stream-oriented transport service:
– Stream of bits (or bytes) flow between end-points

• Stream is unstructured
– Connection-oriented data transfer

• Set up a connection before sending data
– Buffered transfer

• Applications generate any sized messages
• TCP may buffer messages until large datagram is formed
• Option to force (push) the transmission

– Full duplex connection
• Once the connection is setup, data can be sent in both directions

– Reliability
• Positive acknowledgement with retransmission

ITS 323 - Transport Protocols 22

TCP Segment
• Header contains 20 bytes, plus optional fields

– Optional fields must be padded out to multiple of 4 bytes

20
 b

yt
es

ITS 323 - Transport Protocols 23

TCP Segment Fields
• Source/Destination port: 16 bit

port number of the
source/destination

• Sequence number of the first
data byte in this segment

– Unless the SYN flag is set, in
which case the sequence number
is the Initial Sequence Number
(ISN)

• Acknowledgement number:
sequence number of the next data
byte TCP expects to receive

• Header Length: Size of header
(measured in 4 bytes)

• Reserved for future use
• Flags see next slide

• Window contains the number of
bytes the receiver is willing to
accept (for flow control)

• Checksum for detecting errors in
the TCP segment

• Urgent pointer points to the
sequence number of the last byte
of urgent data in the segment

• Options: such as maximum
segment size, window scaling,
selective acknowledgement, …

ITS 323 - Transport Protocols 24

TCP Segment Flags
• Flags (1 bit each, if 1 the flag is true or on):

– CWR: Congestion Window Reduced
– ECE: Explicit Congestion Notification Echo

• CWR and ECE are used on a special congestion control mechanism – we do not cover
this in ITS 323

– URG: segment carries urgent data, use the urgent pointer field; receiver should
notify application program of urgent data as soon as possible

– ACK: segment carries ACK, use the ACK field
– PSH: push function
– RST: reset the connection
– SYN: synchronise the sequence numbers
– FIN: no more data from sender

• Note
– There is only one type of TCP packet

• However the purpose of that packet may differ depending on the flags set
• If SYN flag is set, we may call it a “SYN packet or TCP SYN”
• If the ACK flag is set, we may call it a “ACK packet”
• If the packet carries data, we may call it a “DATA packet”
• If the packet carries data and the ACK flag is set, it is both a DATA and ACK packet

ITS 323 - Transport Protocols 25

Example TCP Segment
Ethernet II, Src: 00:17:31:5a:e5:89, Dst: 00:50:ba:4c:6b:45
Internet Protocol, Src: 10.10.1.237, Dst: 10.10.6.11
Transmission Control Protocol

Source port: 1710
Destination port: 80
Sequence number: 1887125694
Acknowledgement number: 3127238573
Header length: 20 bytes
Flags: 0x18 (PSH, ACK)
Window size: 62597
Checksum: 0x1e00

Hypertext Transfer Protocol

ITS 323 - Transport Protocols 26

Example TCP Segment
Ethernet II, Src: 00:50:ba:4c:6b:45, Dst: 00:17:31:5a:e5:89
Internet Protocol, Src: 10.10.6.11, Dst: 10.10.1.237
Transmission Control Protocol

Source port: 80
Destination port: 1710
Sequence number: 3127238572
Acknowledgement number: 1887125694
Header length: 32 bytes
Flags: 0x12 (SYN, ACK)
Window size: 5840
Checksum: 0xe9db
Options: (12 bytes)

Maximum Segment Size: 1460
SACK permitted
Window Scale: 7

ITS 323 - Transport Protocols 27

Sequence Numbers
• TCP uses sequence numbers to keep track of the data sent and

received
– For flow, error and congestion control

• Example: sliding window mechanisms such as Go-Back-N

• Once a TCP connection is setup, data can be transferred in either
direction
– The sequence numbers used in each direction are independent
– Upon connection setup, an Initial Sequence Number (ISN) is chosen for

each direction
– Each byte has a sequence number relative to the ISN

• Example:
– A to B B to A
– ISN 1530 36
– First byte of data 1531 37
– 100th byte of data 1630 136

ITS 323 - Transport Protocols 28

Connection Establishment
• What is the purpose of connection establishment?

– Allows each end to assure that the other exists
– Allows exchange or negotiation of optional parameters

• Specifically, for TCP, synchronise sequence numbers
– Both sides need an Initial Sequence Number, this is agreed upon

during connection establishment
– Triggers the allocation of resources for the connection (e.g.

allocate buffer space in memory)
• TCP Connection Establishment

– Send segments with the SYN flag set
– Include the Initial Sequence Number in Sequence number field

• Connection establishment often called handshake
– Two Way Handshake: has problems!
– Three Way Handshake: used by TCP

ITS 323 - Transport Protocols 29

Two Way Handshake

A (active) B (passive)

SYN(ISN=10)

SYN(ISN=236)

These are TCP segments with
the SYN flag set and Sequence
Number set to the value of ISN.
The segments carry no data.

This shows a typical
scenario where a server (B)
listens for connections, and
a client (A) initiates the
connection.

ITS 323 - Transport Protocols 30

Problems with Two Way Handshake
• Since we have unreliable network, TCP will use retransmissions if

no response is received
– If A sends a SYN, but receives no response from B after a timeout, then

A will send the SYN again
– May be possible for duplicate SYN’s to be received

• Easy to fix: ignore duplicate SYNs once a connection is established

A B
SYN(ISN=10)

SYN(ISN=236)

SYN(ISN=10)
Retransmits the SYN, since has
not received SYN response yet

Receives a duplicate SYN: TCP will
ignore this duplicate SYN

ITS 323 - Transport Protocols 31

Problems with Two Way Handshake
• But may have an old SYN (from previous connection) arrive

• What went wrong? There is no explicit acknowledgement of each others
SYN and ISN

• Solution: Three way handshake, include explicit acknowledgements

A B
SYN(ISN=10)

SYN(ISN=236)

SYN(ISN=300)

This is an old SYN from a
previous connection. But B
must respond to it because
it has no connection open

Receives a duplicate SYN: TCP will
ignore this duplicate SYN. So B is
Expected next sequence number of
10+1 = 11 (not 301)

DATA(SN=301)

A sent a SYN with ISN 300, and
received a response. So A believes
the response acknowledged its
SYN, and so sends DATA with SN
of 301.

B expects 11, but receives 301
and so discards the segment. This
is a problem!

ITS 323 - Transport Protocols 32

TCP Three-way Handshake

• A sends segment with SYN flag set
– Sequence number = ISNA = i

• B sends segment with SYN and ACK flag set
– Sequence number = ISNB = j
– Ack number = i + 1

• A sends segment with ACK flag set, and includes the first DATA
– Sequence number = i+1
– Ack number = j+1

• Handles the loss of messages and receiving duplicates from old connections
• Note that the ACK sent by A can contain DATA

A B

SYN(ISN=236), ACK(301)

SYN(ISN=300)

DATA(Seq=301),ACK(237)

This is a single TCP packet with the SYN
flag set, the ACK flag set, but not carrying
any data

ITS 323 - Transport Protocols 33

Closing TCP Connection

• Closing a connection is similar to opening a connection: need an
Acknowledgement of the close (or FIN segment)

• It is possible for connection to be closed from A to B (so A cannot send
more data to B), but open in other direction (B can send data to B)

• Also possible for connection reset (abort) – no attempts are made to send
any outstanding data, and a RESET (RST) segment is sent.

ITS 323 - Transport Protocols 34

Data Transfer in TCP
• Once a connection is opened:

– Need reliable delivery of data
• Acknowledgements and retransmissions

– Do not overflow the receivers
• Flow control

– Do not overflow the network (e.g. routers along the path)
• Congestion control

• TCP uses a sliding window mechanism
– For efficient transmissions
– To avoid overflow of receivers and network

• Although the detailed algorithms are specified for TCP, implementations can
still choose certain options, e.g.

– When does the TCP receiver pass the data to the receiving application?
– Does the TCP sender send a segment immediately when it has data from an

application, or does the TCP sender wait until it has a certain number of bytes to
send?

– Is an ACK sent for each received segment, or a cumulative ACK sent for a set of
received segments?

– Different implementations of TCP may choose different approaches
• Trade-off between performance (efficiency) and complexity

ITS 323 - Transport Protocols 35

Example: Sequence Numbers and
Segments

• Assume Application at A wants to send 10,000 byte message (file)
to Application at B
– 10,000 bytes are in the buffer at A

• TCP connection between A and B has been established
– A has chosen an ISN = 300

• The TCP implementation at A decides to break message into 4
segments:
– First two segments are 1000 bytes (plus header)
– Last two segments are 4000 bytes (plus header)

• Why would TCP do this?
– An implementation must follow the flow control, error control and

congestion control algorithms, while trying to maximise efficiency

36

ITS 323 - Transport Protocols 37

Example: Sequence Numbers and
Segments

ITS 323 - Transport Protocols 38

TCP Sliding Window
• Operates on the byte level, not segment

– Three pointers (P1, P2, P3) to bytes in the data stream
• Sender and receiver maintain windows for each direction

• Variable sized window, based on advertised window

11 22 33 44 55 66 77 88 99 1010 1111

Current windowCurrent window

Sent andSent and
ACKedACKed

Sent but Sent but
not not ACKedACKed

SendSend
withoutwithout
delaydelay

Send when Send when
in windowin windowP1P1 P2P2 P3P3

ITS 323 - Transport Protocols 39

Reliability: ACK with Retransmit
• When TCP sender sends data segment, a timer is started for that

segment
– If the timer expires (that is, timeout), the segment is retransmitted
– Retransmission occurs up to a maximum number of times, after which

TCP gives up and indicates an error to the application
• When TCP receiver receives data segment, it may send a

cumulative acknowledgement for the segment (and previous
segments)
– The ACK indicates the sequence number of the next byte received
– E.g. If byte with sequence number 1000 received, ACK will indicate

1001 as next expected byte
– The ACK number X can be interpreted as: “I have received all bytes up

to and including (X-1), and now expect to receive byte X”
– (We say may send: depending on the TCP implementation, it may

choose to send an ACK for every segment it receives, or to send an
ACK to acknowledge a group of segments)

40

TCP Retransmission (Basic)
Host A Host B

Data (1001)

Data (3001)

Data (4001)

Data (5001)

Data (1)

ACK (1001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (6001)

Data (2001)

Ti
m

er

Lost segment

Retransmitted segment

Host A sending DATA which
is 1000 bytes in length. Assumes
the Initial Sequence Number
agreed was 0, hence first byte
is 1.

Data (2001)

Now Host B has received byte 1
through to byte 6000, and so next
expected is 6001.

Host B receives DATA
with bytes from 3001 to
4000. But it has not
received bytes 2001 to
3000, and so sends an
ACK indicating it is still
expected to receive
byte 2001.

In this example, Host B buffers all
bytes it receives, including 3001 to
6000.

ITS 323 - Transport Protocols 41

Fast Retransmit
• The basic retransmission scheme can be improved

– Waiting for a timeout to expire usually results in poor
performance

• Fast Retransmit is available in TCP
– If 3 duplicate ACKs received, retransmit
– No need to wait for timeout

• (However, timeout still occurs if 3 duplicate ACKs are not received)

42

TCP Retransmission (Fast Retransmit)
Host A Host B

Data (1001)

Data (3001)

Data (4001)

Data (5001)

Data (1)

ACK (1001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (6001)

Data (2001)

Ti
m

er

Lost segment

Third duplicate ACK is received
So retransmitted segment

Data (2001)

With Fast Retransmit, in many cases if a segment is lost, a retransmission will be triggered by receiving
three duplicate ACKs. So Host A does not have to wait for a timeout to retransmit. This is more efficient
than the basic scheme for retransmission.

ITS 323 - Transport Protocols 43

TCP Flow Control
• Aim: Prevent sender from overrunning capacity of receivers
• Needed for TCP because:

– Application cannot keep up with incoming data
– TCP cannot keep up with incoming segments

• Must take into account:
– Variable end-to-end round trip times (RTT)
– Interactions between TCP and IP and application protocols

• TCP flow control:
– Receiver notifies sender of amount of buffer space is left (that is, receiver says how much it

can receive)
• This is carried in the Window field of the TCP header, and called the Advertised Window

– The Sender cannot send more than the Advertised Window
• Example (next slide)

– Assumes TCP receiver has a 4000 byte buffer which is initially empty, and that the TCP
sender knows that the buffer is empty (that is, the previous advertised window was 4000)

– Shows how the receivers buffer (and hence advertised window) control the flow of data from
the TCP sender

– Also shows the independence between the Application writing/reading data and TCP sending
segments. If the Application writes data, it doesn’t mean that TCP will immediately send that
data.

Data (1)

ACK(2001) WIN=2000

TCP
Host B (Receiver)

Data (2001)

ACK=4001, WIN=0

ACK=4001, WIN=2000

Data (4001)

Application writes
2000 bytes

Sender is
blocked

Host A (Sender)
Application TCP Application

Application writes
3000 bytes

Application reads
2000 bytes

Application writes
1000 bytes

4000 byte buffer

Application reads
4000 bytes

TCP Congestion Control
• Flow control protects slow receiver from a fast sender

– Congestion control protects the network from a fast sender
• Without congestion control:

– To transport protocol, congestion is seen as increased delay
– Increased delay results in more retransmissions
– More retransmissions results in more congestion
– Leads to network collapse, no data can be successfully received

• TCP Congestion Control
– Uses implicit congestion detection

• Loss of segments imply congestion
– TCP assumes segments are not lost due to errors on links (since most networks TCP was

designed for had very few errors on links)
• If a TCP sender does not receive an ACK within a timeout (or receives 3 duplicate

ACKs), the TCP sender assumes there is congestion in the network and implements
appropriate congestion control

– Mechanisms used by TCP include:
• Slow Start: start by sending at a slow rate, and if no segments are lost, increase that

rate
• Multiplicative Decrease: if congestion is detected, decrease the rate you send by half

– Congestion control is implemented by:
• Maintaining second window at sender, called congestion window
• TCP sender determines how much it can send from:

– minimum (advertised window, congestion window)

ITS 323 - Transport Protocols 46

TCP in Details
• TCP is complex!

– We have introduced some basics of connection setup,
retransmissions and flow control

– There are many more details of these concepts
• Estimating timeouts, congestion control mechanisms, connection

setup options, sending/receive policies, …
– And there are different versions of TCP, each providing new

features and improvements, e.g.
• Original TCP - RFC 793 (1981)
• TCP Tahoe (1988)
• TCP Reno (1990)
• TCP NewReno (1995)

• Some more details of TCP may be covered in:
– ITS 327 and ITS 413
– Practical use of TCP will be illustrated in ITS 332 (Lab class)

	Transport Protocols
	Contents
	Where Are We?
	Host-to-Host Communications
	Transport Protocols
	Transport Protocols
	Transport Protocol Services
	Addressing and Multiplexing
	Internet Applications
	Multiple Applications, Multiple Transport Protocols
	At the Destination Host …
	Multiplexing
	Port Numbers
	User Datagram Protocol (UDP)
	User Datagram Protocol
	UDP Segment
	Example UDP Datagram
	Example UDP Datagram (Hex Bytes)
	Example: UDP-based Application
	Transmission Control Protocol (TCP)
	Transmission Control Protocol
	TCP Segment
	TCP Segment Fields
	TCP Segment Flags
	Example TCP Segment
	Example TCP Segment
	Sequence Numbers
	Connection Establishment
	Two Way Handshake
	Problems with Two Way Handshake
	Problems with Two Way Handshake
	TCP Three-way Handshake
	Closing TCP Connection
	Data Transfer in TCP
	Example: Sequence Numbers and Segments
	Example: Sequence Numbers and Segments
	TCP Sliding Window
	Reliability: ACK with Retransmit
	TCP Retransmission (Basic)
	Fast Retransmit
	TCP Retransmission (Fast Retransmit)
	TCP Flow Control
	TCP Congestion Control
	TCP in Details

