Transmission Media

Dr Steve Gordon ICT, SIIT

Contents

- Guided Media
 - Twisted Pair
 - Coaxial Cable
 - Optical Fibre
- Unguided Media
 - Concepts: Antennas and Propagation
 - Terrestrial Microwave
 - Satellite Microwave
 - Broadcast Radio

Design Factors

- Key concerns are data rate and distance
 - Generally, we want to transmit as fast as possible, for as far as possible
- Design factors that influence this are:
 - Bandwidth
 - Higher bandwidth gives higher data rate
 - Transmission impairments
 - E.g. Attenuation limits the distance
 - Interference
 - From competing signals, e.g. other cables or wireless systems
 - Number of receivers in guided media
 - More receivers introduces more attenuation

Electromagnetic Spectrum

VLF = Very low frequency LF = Low frequency

Frequency Bands

Band	Frequency Range	Free-Space Wavelength Range	Propagation Characteristics	Typical Use
ELF (extremely low frequency)	30 to 300 Hz	10,000 to 1000 km	GW	Power line frequencies; used by some home control systems.
VF (voice frequency)	300 to 3000 Hz	1000 to 100 km	GW	Used by the telephone system for analog subscriber lines.
VLF (very low frequency)	3 to 30 kHz	100 to 10 km	GW; low attenuation day and night; high atmospheric noise level	Long-range navigation; submarine communication
LF (low frequency)	30 to 300 kHz	10 to 1 km	GW; slightly less reliable than VLF; absorption in daytime	Long-range navigation; marine communication radio beacons
MF (medium frequency)	300 to 3000 kHz	1,000 to 100 m	GW and night SW; attenuation low at night, high in day; atmospheric noise	Maritime radio; direction finding; AM broadcasting.
HF (high frequency)	3 to 30 MHz	100 to 10 m	SW; quality varies with time of day, season, and frequency.	Amateur radio; international broadcasting, military communication; long-distance aircraft and ship communication
VHF (very high frequency)	30 to 300 MHz	10 to 1 m	LOS; scattering because of temperature inversion; cosmic noise	VHF television; FM broadcast and two-way radio, AM aircraft communication; aircraft navigational aids
UHF (ultra high frequency)	300 to 3000 MHz	100 to 10 cm	LOS; cosmic noise	UHF television; cellular telephone; radar; microwave links; personal communications systems
SHF (super high frequency)	3 to 30 GHz	10 to 1 cm	LOS; rainfall attenuation above 10 GHz; atmospheric attenuation due to oxygen and water vapor	Satellite communication; radar; terrestrial microwave links; wireless local loop
EHF (extremely high frequency)	30 to 300 GHz	10 to 1 mm	LOS; atmospheric attenuation due to oxygen and water vapor	Experimental; wireless local loop
Infrared	300 GHz to 400 THz	1 mm to 770 nm	LOS	Infrared LANs; consumer electronic applications
Visible light	400 THz to 900 THz	770 nm to 330 nm	LOS	Optical communication

Propagation: LOS = Line of Sight; GW = Ground Wave (follows earths curvature) ; SW = Sky Wave (reflects off ionosphere)

Radio Frequency (RF): 3Hz to 300GHz

Guided Media

Electrical Cables: Twisted Pair, Coaxial Cable Optical Cables: Optical Fibre

Electrical Cables

- Transmit electrical signals on a conductor
 - Copper is one of the most commonly used metals in network cables
- A cable carrying electrical current radiates energy, and can pick-up energy from other sources
 - Can cause interference on other cables
 - Other sources can cause interference on the cable
 - E.g. two wires next to each other can cause 'cross-talk' interference
 - Interference results in poor quality signals being received
- To minimise interference:
 - Keep the cable lengths short
 - Keep the cables away from other sources
 - Design the cables to minimise radiation and pick-up
 - Use materials to shield from interference
 - Organise multiple wires so they don't interfere with each other

Twisted Pair

- Two insulated copper wires arranged in spiral pattern to form one communications link
 - Often many pairs are bundled into one cable
 - E.g. LAN cables commonly use 4 twisted pairs per cable
- Most commonly used and least expensive medium
 - Used in telephone networks and in-building communications
 - Telephone networks designed for analog signalling
 - But support digital data using modem
 - Also used for digital signalling
- Two varieties of twisted pair:
 - Unshielded Twisted Pair (UTP), subject to interference, cheaper and easy to use
 - Category 3 for Ethernet; Category 5 used for current 100Mb/s Fast Ethernet
 - Shielded Twisted Pair (STP), higher data rates, but expensive and harder to install

Coaxial Cable

- Two conductors, one inside the other
 - Arranged to minimise interference from each other and other sources
- Provide much more shielding from interference than twisted pair
 - Higher data rates
 - More devices on a shared line
 - Longer distances
- Widely used for cable TV, as well as other audio/video cabling
- Used in long-distance telecommunications, although optical fibre is more relevant now

Optical Cables and Fibre

- Light (optical rays) is guided within glass or plastic fibres
- Used in long-distance telecommunications
 - Also becoming popular for telephone systems, local area networks, and city-wide networks
- Advantages of optical fibre over electrical cables (twisted pair and coaxial cable)
 - Optical fibre has much lower loss: can transfer much larger distances with a single cable
 - Optical fibre has much higher bandwidth: a single fibre is equivalent to 10's or 100's of electrical cables
 - Small size, light weight: lowers cost of installation
 - Electromagnetic isolation: not vulnerable to interference from other systems or crosstalk

Comparison of Guided Media

- Electrical Cables
 - Moderate data rates: 1Gb/s
 - Maximum distance: 2km (twisted pair); 10km (coaxial cable)
 - Cheapest for low data rates
 - UTP: easy to install, susceptible to interference
 - STP, Coaxial Cable: rigid, protection against interference
- Optical Cables
 - Very high data rates: 100Gb/s+
 - Maximum distance: 40km
 - Expensive equipment, but cost effective for high data rates
 - Difficult to install

Unguided Media

Antennas and Propagation

Terrestrial Microwave Satellite Microwave Broadcast Radio

Wireless Transmission

- Common wireless systems for communications include:
 - Terrestrial microwave, e.g. television transmission
 - Satellite microwave, e.g. IPstar
 - Broadcast radio, e.g. IEEE 802.11 WiFi (wireless LAN)
 - Infrared, e.g. in-home communications

Antennas

- An antenna converts between electrical current and electromagnetic waves (the 'wireless signal')
 - Waves are within the RF band (3Hz to 300GHz)
 - Direction and propagation of a wave depends on the antenna shape
 - Wireless signal is transmitted with a power level P_t
 - Power of received signal depends on: antennas, frequency, distance and obstacles between transmitter/receiver
- Isotropic Antenna
 - Power propagates in all directions equally (omni-directional)
 - Theoretical concept; perfect isotropic antenna cannot be built in practice
- Directional Antenna
 - Concentrates power in a particular direction
 - Increase of receive power (compared to isotropic antenna) due to directionality is the *antenna gain*

Propagation of Wireless Signals

- Wireless signals disperse with distance
 - Received power is less than transmitted power
- If we now the smallest powered signal a receiver can successful decode, then what is the maximum distance between transmitter and receiver?
- Propagation Models
 - Mathematical models of the amount of power lost between transmitter and receiver
 - Examples:
 - Friis free space propagation model (ideal conditions)
 - Okumura-Hata models for urban, suburban and open areas
 - Longley-Rice model suitable for TV broadcast links
 - Log-distance model for indoor environments

Propagation of Wireless Signals

Free Space Propagation Loss

• Ideal model to determine amount of power loss between transmitter and receiver:

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{G_r G_t \lambda^2}$$

• For a parabolic antenna with radius *r* and effective area $A = \pi r^2$:

$$G = \frac{4\pi A}{\lambda^2}$$

(Ideal model: assumes no obstacles, operating in a vacuum (free-space), and perfect antennas)

Decibels and Power

- Power is measured in Watts (or milliwatts ...)
- Decibel (dB) is a measure of a ratio between two signals
 - For transmission systems, often referred to as a gain or loss
 - Example: loss of a system with $P_t = 100W$ and $P_r = 10W$
 - $Loss_{dB} = 10 \log_{10} (P_t/P_r) = 10 dB => Gain_{dB} = -10dB$
- Decibel can be also given relative to some value :
 - dBi: ratio relative to an isotropic antenna (e.g. 6dBi)
 - dBW: ratio relative to 1W
 - P_t = 100W = 20dBW
 - dBmW (or dBm): ratio relative to 1mW
 - P_t = 30mW = 14.77 dBm = -15.23 dBW
- Free space propagation model uses standard units (Watts, metres, seconds)
 - You may need to convert from dB-based units to standard units

Terrestrial Microwave

- Parabolic antenna (usually 1-3 metres) used to transmit point-to-point to another antenna
 - Line-of-sight communications; often antennas are placed high (towers, buildings) to avoid obstacles
- Applications
 - Long-distance telecommunications (alternative to optical fibre, coaxial cable)
 - Voice and TV transmission
 - Less repeaters needed, but line-of-sight is needed
 - Only need access to tower sights (as opposed to digging holes in ground for cables)
 - Short communications between buildings (e.g. office buildings in city)
 - Mobile telephone systems (GSM, CDMA, 3G)

Satellite Microwave

- Communications satellite acts as microwave relay station
 - Links two or more ground/earth stations
 - Receives signal on one frequency (uplink), repeats or amplifies, and transmits on another frequency (downlink)

Satellite Microwave

- Applications
 - Television distribution: broadcast topology
 - Long-distance telephone transmission: national and international calls
 - Private business networks: Very Small Aperture Terminals (VSATs) allow for low cost earth stations at businesses/homes
 - Global Positioning System (GPS): provides longitude/latitude coordinates to receiver devices

• Features

- High cost in deployment of satellites
- Significant delay (0.5sec) for transmissions: problems for voice calls and flow/error control in data traffic
- Broadcast easy to send to many users
- Avoids ground infrastructure used by military and emergency services

Example: IPSTAR

- IPStar-1 (or Thaicom-4) satellite providing coverage over Asia
 - 84 individual spot beams in point-to-point topology
 - Additional larger regional spot beams
 - 14GHz Ku band
 - Provides broadband Internet service to users in Asia
 - E.g. 512kb/s down, 256kb/s up
 - Businesses: 1-2Mb/s down

Example: IPSTAR

Broadcast Radio

- Microwave is directional; Broadcast radio is omnidirectional
 - Can use variety of antennas (not dish shaped) and do not need precise alignment of antennas
- Generally refers to 30MHz to 1GHz
- Applications
 - UHF/VHF TV
 - FM radio
 - Wireless data networking (wireless LAN)