ITS 323 - QuIz 5 ANSWERS

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad

Question 1 [4 marks]
a) One aim of Medium Access Control (MAC) in LANs is to ensure frames (or transmissions) do not collide with each other.

T / F
b) One aim of Medium Access Control (MAC) in LANs is to ensure only one user (computer) transmits at a time.

T / F
c) Distributed control for Medium Access Control protocols has the advantage of avoiding performance bottlenecks at a central node.

T/F
d) Centralised control for Medium Access Control (MAC) has the advantage (compared to distributed control) that if the controlling station fails, the network can still operate.

T/F
e) The IEEE 802 series of LAN standards focus on the Physical Layer, Data Link Layer and Network Layer of the OSI model.

T / F
f) The IEEE 802 series of LAN standards focus on the Physical Layer and Data Link Layer of the OSI model.

T / F
g) A contention-based MAC protocol allows stations to reserve time slots for transmissions in the future.
T / \mathbf{F}
h) A contention-based MAC protocol gives each station a turn at transmitting in an ordered manner (e.g. station 1 , station 2 , station $3, \ldots$).

T/F

Question 2 [3 marks]
The following diagram shows a network of 7 nodes with the costs shown for each link (the costs are the same in both directions of the link). Assuming least-cost routing, complete the routing table for node 1/6/7.

Node 1			
Destination	Path	Cost	Next Node
2	$1-2$	1	2
3	$1-3$	4	3
4	$1-2-4$	4	2
5	$1-3-5$	6	3
6	$1-2-6$	3	2
7	$1-2-6-7$	6	2

Node 6			
Destination	Path	Cost	Next Node
1	$6-2-1$	3	2
2	$6-2$	2	2
3	$6-4-3$	6	4
4	$6-4$	4	4
5	$6-4-5$	7	4
7	$6-7$	3	7

Node 7			
Destination	Path	Cost	Next Node
1	$7-6-2-1$	6	6
2	$7-6-2$	5	6
3	$7-5-3$	7	5
4	$7-6-4$	7	6
5	$7-5$	5	5
6	$7-6$	3	6

Question 3 [3 marks]
If flooding is used to send a packet from 1 to 7 in the network above, and a hop limit of 2 is used:
a) How many copies of the packet are transmitted in the network?
b) Does the destination receive the packet? Why or why not?

[^0]With a hop limit of 2 , nodes 4 , 5 and 6 will not forward any further (hop count will have been reduced to 0), and hence node 7 will not receive a copy.

If a probability-based selective flooding protocol is used, where a node randomly chooses one output link with a probability inversely proportional to the cost (assume no hop limit):
c) What is the most likely path the packet will take from source to destination?

Answers

Most likely path is 1-2-6-7 (i.e. least cost path). A node will most likely (i.e. with higher probability) choose the least cost link, and hence the least cost path will be chosen.

[^0]: Answers
 One copy from 1-2 and one copy from 1-3. Then 2 copies sent from 2 (to 4 and 6) and from 3 (to 5 and 4). Total of 6 copies of the packet sent.

