ITS 323 - QUIZ 3 ANSWERS

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad
In all questions, assume bits are number left to right. That is, for the sequence 010111 , the first bit is 0 , the second bit is 1 , the third bit is 0 and the sixth bit is 1 .
Question 1 [2 marks]
Consider a simplified CRC error detection algorithm where there are k bits of data to send, the frame check sequence (which is appended to the end of the data) is f bits in length, and the divisor must be $(f+1)$ bits in length. If the data to send is 1010 and the divisor is 110:
a) What is the value (in binary) of the frame check sequence? [1 mark]
b) If the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ bits are received in error, can the receiver detect the errors? Show your calculations or explanation. [1 mark]

Answer

a. The frame check sequence (FCS) must be two bits in length (since divisor is 3 bits). Therefore the transmitted data is: 1010 xx where $\mathrm{xx}=\mathrm{FCS}=10$. This results in transmitted data of $101010=$ 42 , which is divisible by the divisor $(110=6)$.
b. If the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ bits are in error, then $100100=36$ is received. Since 36 is divisible by 6 , then NO error is detected.

Question 2 [4 marks]
a) Assume a Hamming distance based forward error correction algorithm is used on a data block of 32 bits, and produces 50 -bit codewords. If you instead increase the codeword size to 40 bits, in general, less errors can be detected.

True / False
b) Choosing a very long time-out interval for an ARQ protocol may lead to low throughput because a lot of time may be spend waiting for an ACK (in the case that the DATA frame was lost).

$$
\text { True } \quad / \quad \text { False }
$$

c) Using Pulse Code Modulation to encode analog data, according to the sampling theorem, a data rate of $6 \mathrm{Mb} / \mathrm{s}$ is required. How many bits are used to represent each sample (code), if the highest frequency component of the analog data is 1 MHz ?
a. 1 bit
b. 2 bits
c. 3 bits
d. 4 bits
e. 5 bits
f. 6 bits
g. 12 bits
d) If a protocol uses an 6-bit field in the header for sequence numbers of frames (and all frames are the same size), according to the sliding window mechanism, the minimum number of frames a receiver should be able to store in its receive buffer is:
a. 0 frames (no buffer needed)
b. 1 frame
c. 5 frames
d. 6 frames
e. 31 frames
f. 32 frames
g. 63 frames
h. 64 frames

Abstract

Answer True. A larger codeword (relative to the data) means there is a greater chance that, if the codeword has errors, then it will be different from one of the valid codewords. A received codeword different from a valid codeword indicates an error.

True. With a long timeout, the source spends a lot of time waiting (not sending) if a DATA frame is lost, hence resulting in low throughput.

3 bits. The sampling theorem says you should sample at at least twice the rate of the highest frequency component ($2 \times 1 \mathrm{Mhz}=2000000$ samples per second). Each sample contains a single code, which contains 3 bits. Data rate will $6 \mathrm{Mb} / \mathrm{s}$. 63 frames. The maximum window size is $2^{k}-1$ where k is the number of bits in the sequence number. The receiver must be able to receive the maximum window full of frames before sending an ACK, hence needs a buffer size to store at least $2^{k}-1$ frames.

Question 3 [3 marks]
What is the maximum throughput of the Stop and Wait Flow Control protocol.
You can assume:

- Data rate is $2 \mathrm{~Gb} / \mathrm{s}$
- Data frame size is 9000 bits of data plus 1000 bits of header
- ACK size is 1000bits
- Propagation time is $1.75 \mu \mathrm{sec}$
- Processing delay is 0

[^0]```
AckTransmission \(=0.5\) usms
Propagation \(=1.2 \mathrm{~ms}\)
Processing \(=0 \mathrm{~ms}\)
Throughput \(=9000\) bits \(/(5+1.75+0.5+0+1.75)\) us
\(\approx 9000\) / 9 us
\(=1000 \mathrm{Mb} / \mathrm{s}=1 \mathrm{~Gb} / \mathrm{s}\)
```

Question 4 [1 mark]
Go-Back-N ARQ with a $k$ bit sequence number limits the maximum window size to $2^{k}-1$. Explain a problem that may occur if the maximum window size was greater than $2^{k}$ (e.g. $2^{k}+1$ ). (A diagram may help with your explanation).

## Answer:

With a $k$ bit sequence number, the range of numbers are: $0,1,2, \ldots, 2^{k}-2,2^{k}-1,0,1, \ldots$
If the window is larger than $2^{k}$, then the window may encompass frames with the same sequence number (say, $i$ ). The problem with this is that when an ACK is returned with number ( $i+1$ ), the source cannot be certain which frame the ACK acknowledges: the first frame with sequence number $i$ or the second frame with the sequence number $i$ ?
Example: $k=2$, window size is 5 .

| Sequence numbers: | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Possible window |  | 1 | 2 | 3 | 0 | 1 |  |  |  |  |

If an ACK with number 2 is returned, does it acknowledge the first frame with sequence number 1 or the second frame with sequence number 1 ? This ambiguity should be not be present in a protocol.


[^0]:    Answer:
    Total time for transmission of data is: DataTransmission + Propagation + Processing + AckTransmission + Propagation

    DataTransmission: $10000 / 2 \mathrm{~Gb} / \mathrm{s}=5 \mathrm{us}$

