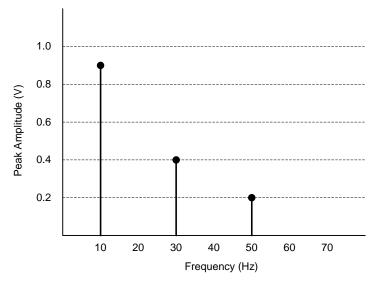
SIIT ITS 323

ITS 323 – QUIZ 2


First name: _____ Last name: _____

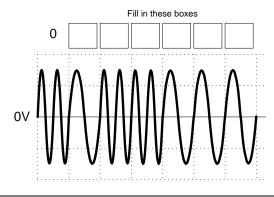
ID:

Total Marks: _____

Question 1 [3 marks]

Below is a frequency domain plot of a communications signal s(t).

- a) What is the bandwidth of the signal s(t)? ($\frac{1}{2}$ mark)
- b) What is the frequency of the signal s(t)? (½ mark)
- c) Write a time domain equation for the signal s(t)? (1 mark)


S(t) =

d) If using signal s(t), two bits of information can be sent in one period, what is the maximum data rate? (1 mark)

Question 2 [1.5 marks]

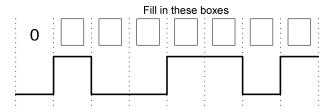
The following diagram shows part of a signal which modulates data using Binary Frequency Shift Keying. The vertical dashed lines show the transitions between each bit. Complete the boxes to show the data transmitted.

SIIT ITS 323

Question 3 [1 mark]

Consider a communications link with a bandwidth of 1MHz. If the received noise power is 10mW, what signal power would be required to be able to transmit at the maximum theoretical data rate of 3Mb/s?

Question 4 [2 marks]


Assume you are using the free space loss equation to design a wireless link from one building to another (separated by 1km). The wireless receiver has a fixed receiver power threshold.

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{G_t G_r \lambda^2} \text{ where } G = \frac{4\pi A}{\lambda^2}$$

After initial testing, although you have line-of-sight, you determine the received signal is two weak to communicate between buildings. List two approaches you can use to improve your design to a stronger link between buildings.

Question 5 [1.5 marks]

If the Non-Return-to-Zero Invert on ones (NRZI) encoding scheme is used, complete the bit pattern that the following signal represents. (That is, fill in the boxes).

Question 6 [1 mark]

a) What is the bit rate for a signal in which 10 bits take a total of 20µs to transmit?

b) True or false: Shielded Twister Pair provides higher data rates (than UTP) by protecting the signals from interference.

True / False