ITS 323 - QUIZ 2 (ITB) ANSWERS

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad
out of 8.5
Question 1 [3 marks]
a) What is the bandwidth of a signal that can be decomposed into four sine waves with frequencies at $30,80,180$, and 280 MHz ?

Answer: $\mathbf{2 5 0} \mathbf{~ M H z}$
b) A device is sending out data at the rate of 1000 bps . How long does it take to send out 10 bits?

Answer: 0.01sec
c) Circle the correct words: Making a telephone call over the ordinary fixed-line telephone network is an example sending [Analog / Digital] data over a [Analog / Digital] signal.

Answer: Analog, Analog

d) Consider the following two signals:

$$
\begin{aligned}
& \mathrm{S} 1=(4 / \pi)[\sin (2 \pi \mathrm{ft})+(1 / 3) \sin (2 \pi(3 \mathrm{f}) \mathrm{t})+(1 / 5) \sin (2 \pi(5 \mathrm{f}) \mathrm{t})] \\
& \mathrm{S} 2=(4 / \pi)[\sin (2 \pi \mathrm{ft})]
\end{aligned}
$$

If our transmission system supports the bandwidth of 8 kHz , which signal (S1 or S 2) provides the highest data rate?

Answer: S2
e) From your answer of part (d), although the signal you selected provides the highest data rate, what is a disadvantage of the signal (compared to the other lower data rate signal)?

Answer: More errors

Question 2 [1.5 mark]
If the solid curve of the figure below represents $\sin (2 \pi t)$, what does the dotted curve represent? That is, the dotted curve can be written in the form $A \sin (2 \pi f t+\phi)$; what are A, f, and ϕ ?


```
Answer:
A:
``` \(\qquad\)
``` 2
``` \(\qquad\)
```

f:

``` \(\qquad\)
``` 2 \(\pi\)
```


Question 3 [2 marks]

Given a channel with an intended capacity of $18 \mathrm{~kb} / \mathrm{s}$, the bandwidth of the channel is 3 kHz . What signal-to-noise ratio is required to achieve this capacity?

```
Answer:
\(\mathrm{C}=\mathrm{B} \log _{2}(1+\mathrm{SNR})\)
\(18 \mathrm{~kb} / \mathrm{s}=3 \mathrm{kHz} \log _{2}(1+\mathrm{SNR})\)
\(6=\log _{2}(1+\) SNR \()\)
\(1+\mathrm{SNR}=2^{6}\)
SNR \(=63\)
(and in \(\left.\mathrm{dB}, \mathrm{SNR}_{\mathrm{dB}}=10 \log _{10}(63)=18 \mathrm{~dB}\right)\)
```

Question 4 [2 marks]
If the Non-Return-to-Zero Invert on ones (NRZI) encoding scheme is used, complete the bit pattern that the following signal represents. (That is, fill in the boxes).

Answer: 0100101

