ITS 323 - Quiz 1 (CS) AnswERS

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad
out of 10

Question 1 [2 marks]
Name the four different types of addresses used in the Internet layered model, and for each address type, give the layer at which it is used.

```
Answer
Physical addresses (hardware/MAC/data link) - Data Link and/or Physical layers
Logical addresses (IP/network) - Network layer
Port addresses (transport) - Transport layer
Application addresses (specific) - Application
```


Question 2 [2.5 marks]

True or false (circle the correct answer, T or F):
a) Interactive voice traffic (e.g. a voice call over the Internet) generally requires a small and constant delay.
T / F
b) A web browser, such as Firefox or Internet Explorer, would normally implement an entire TCP/IP stack (all layers).

T / F
c) A PC or laptop computer may have one or more physical interfaces (e.g. a wired Ethernet interface and a wireless LAN interface). An Internet router will normally have only one interface.
T / F
d) The Internet layered model includes the Network layer, Transport layer and Session layer.

$$
\mathrm{T} / \mathrm{F}
$$

e) Most of the important protocols used in the Internet (e.g. TCP and IP) were developed by the International Organisation for Standardisation (ISO).
T / F

Answer

a. T - delay and variances in delay make it difficult to undertake a conversation.
b. F - Web browser implements HTTP (and other application layer protocols). It doesn't implement transport or lower layers.
c. F - A router normally has at least 2 interfaces since a router interconnects different networks (1 interface for each network)
d. F - The Internet layered model does not include the Session layer.
e. F - Most Internet protocols were created by IETF (and individuals)

Question 3 [3.5 marks]

Consider the network shown below in which two cable links are used to connect A to B (via C).

A	2 km	C	4 km	B
	$?$		$100 \mathrm{Mb} / \mathrm{s}$	

Queuing delay is
10usec
If a message of size 1000 bits has to be sent from A to B with a maximum delay of 150 usec , then what is the minimum data rate is required over the first link?
You can assume the transmission velocity is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ for each cable. Also assume there are no processing delays at any node, and no queuing delay at nodes A or B.

```
Answer
Propagation over first link \(=2000 / 200000000=10\) usec
Propagation over second link \(=20\) usec
Transmission over second link \(=1000 / 100000000=10\) usec
Queeuing delay = 10usec
So far the total delay is 50 usec. Must be less than 150 , so maximum for first link is 100 usec
Transmission over first link \(=100\) usec \(=1000 /\) rate
Therefore minimum rate \(=1000 / 100 \mathrm{usec}=10 \mathrm{Mb} / \mathrm{s}\)
```

Question 4 [2 marks]
In the Question above, if node A adds 100 bits of header to the message, and node C adds another 50 bits of header to the message it receives, then what is the throughput of the message if the maximum delay is experienced?

```
Answer
1000 bits of message are received within 150usec. Therefore throughput is:
1\times103/1.5\times10-4 = 1/1.5 x 10}\mp@subsup{0}{}{7}=6.6 Mb/s
```

