
Transport Protocols

Dr Steve Gordon
ICT, SIIT

ITS 323 - Transport Protocols 2

Contents
• Overview of Transport Protocols
• Addressing and Multiplexing

– Common to TCP and UDP

• TCP
– Header
– Connection Management
– Reliability
– Flow Control
– Congestion Control

• UDP

ITS 323 - Transport Protocols 3

Where Are We?

Physical

Data Link

Network

Transport

ApplicationUser
Process

Operating
System

NIC

Many different types of networks
LANs/WANs: Ethernet, ADSL, ATM,
Frame Relay, SDH/SONET, PDH,
Telephone network, Satellite, Wireless
LAN, Mobile Phone, USB, Firewire, …

IP: joins the networks together, and
finds paths from source to destination
interfaces

Send data between source and
destination processes/applications

ITS 323 - Transport Protocols 4

Host-to-Host Communications
Transport layer deals with sending data between processes/applications on source
host and destination host. Often referred to as End-to-End communications.

Physical

Data Link

Network

Transport

Application

Physical

Data Link

Network

Transport

Application

PHY

DL

PHY

DL

Network

My Computer SIIT Web/Email
Server

My Broadband
Router

00:17:9A:36:F7:65 00:13:49:6C:E3:B3

Network

192.168.1.1

37473 37474

192.168.1.3 203.131.209.77

80 25

www.siit.tu.ac.th steve@siit.tu.ac.th

00:13:49:B5:E7:22

125.75.21.19

steve@sandilands.info

00:12:37:BD:6F:29

There can be any number
of routers in this network

ITS 323 - Transport Protocols 5

Transport Protocols
• Transport protocols can be connection-oriented or connection-less

– Connection-less: send data from a source process to a destination
process usually with no concern about reliability, flow control. Simple.

• IP is a connection-less network layer protocol
• UDP is a connection-less transport layer protocol. Very simple.

– If your application wants to send data fast and can cope with errors, then use
UDP

– Connection-oriented
• Most transport protocols are connection-oriented

– TCP is a connection-oriented transport layer protocol.
• Include functions for setting up connection, error control, flow control,

addressing. Very complex.
• Since IP is connection-less, connection-oriented transport protocols are very

important:
– Provide the reliability that IP does not provide
– Most applications need reliability, and hence use TCP

– Our focus is on Internet technologies, so:
• We will describe TCP and then quickly describe UDP

ITS 323 - Transport Protocols 6

Transport Protocols
• Internet transport protocols (standardised by the IETF)

– Transmission Control Protocol (TCP)
– User Datagram Protocol (UDP)
– Stream Transmission Control Protocol (SCTP)

• Other transport protocols (standardised and experimental)
– OSI: TP-0 to TP-4
– Transaction-based: T/TCP, WAP (transaction layer)
– IBM SNA: NetBEUI
– AppleTalk: ATP
– Secure transport protocols
– Transport protocols for high-speed networks
– Transport protocols for wireless networks

ITS 323 - Transport Protocols 7

Transport Protocol Services
• The main functions of a transport protocol
• Common to both TCP and UDP

– Addressing
– Multiplexing

• Specific to TCP (and other connection-oriented transport protocols)
– Connection Management
– Error control
– Flow control
– Congestion control

• We will assume that the network layer (IP) is unreliable:
– Datagrams can be lost (sent, but not arrive at destination)
– Datagrams can arrive, but with errors
– Datagrams can arrive in a different order than they were sent
– Datagrams can be duplicated (one datagram sent, two copies arrive)

Addressing and Multiplexing

9

Ports and Multiplexing
• A datagram is sent to a computer on the Internet based on the

destination IP address
– IP addresses identify network interfaces on computers

• E.g. your PC may have one IP address for its Ethernet interface; your Laptop may have
an IP address for Ethernet and another for wireless LAN; a router will have one IP
address for each LAN/WAN interface

• The IP datagram also contains a Protocol Number to determine which
protocol will handle the data

• Once the transport protocol has the data, how does it know which
application it is destined to?

– Port numbers

IP

TCP UDP ICMP

App1 App2 App3 AppN

…

…

Identify the IP interface via IP address
in IP header

Identify the Transport protocol by
Protocol number in IP header

Identify the Application by Port
Number in Transport header

ITS 323 - Transport Protocols 10

Ports and Multiplexing

IP

TCP
(6)

UDP
(17)

Web Server
HTTP (80)

Email Server
SMTP (25)

Network layer

Transport layer

Application layer

Destination Host = 220.7.8.3

HTTP Data

DataIP
Src IP = 150.16.32.1
Dest IP = 220.7.8.3
Protocol = 6

DataTCP
Src Port = 50134
Dest Port = 80

DL/PHY
layers

Receive
bits

Data Link
Physical

ITS 323 - Transport Protocols 11

Ports and Multiplexing
• Multiplexing

– Use of port numbers to identify applications allows traffic from multiple
applications to be sent over the one interface

– At the sender: When an application sends data to the Transport Protocol, the
destination port number is identified and included in the Transport Protocol
header

– At the receiver: When the Transport Protocol receives data, it determines which
application to send it to based on the destination port number in the Transport
Protocol header

– The Transport Protocol header also contains the source port number (so a
response can be sent)

• Port numbers
– IANA defines Port numbers for Internet applications

• Well Known Ports: 0 to 1023
• Registered Ports: 1024 to 49151
• Private Ports: 49152 to 65535

– Examples: Web server (80), Email server (25), FTP Server (21), Telnet (23)
• Client applications generally have an unused port in the Private Port range chosen by

the operating system
• Hence, a Transport Connection is uniquely identified by:

– source port, source IP address, destination port, destination IP address

Transmission Control Protocol (TCP)

ITS 323 - Transport Protocols 13

TCP
• The most commonly used transport protocol today

– Almost all Internet applications that require reliability use TCP
• Web browsing, email, file sharing, instant messaging, file transfer, database

access, proprietary business applications, some multimedia applications (at
least for control purposes), …

• TCP provides a reliable, stream-oriented transport service:
– Stream of bits (or bytes) flow between end-points

• Stream is unstructured
– Virtual circuit connection

• Set up a connection before sending data
– Buffered transfer

• Applications generate any sized messages
• TCP may buffer messages until large datagram is formed
• Option to force (push) the transmission

– Full duplex connection
• Once the connection is setup, data can be sent in both directions

– Reliability
• Positive acknowledgement with retransmission

ITS 323 - Transport Protocols 14

TCP Header Format
• Header contains 20 bytes

– Additional options are possible, must be padded out to multiple of 4
bytes

• TCP Segment = Header + Data

ITS 323 - Transport Protocols 15

TCP Header Format
• Source/Destination port: 16 bit port number of the

source/destination
• Sequence number of the first data byte in this segment

– Unless the SYN flag is set, in which case the sequence number is the
Initial Sequence Number (ISN)

• Acknowledgement number: sequence number of the next data
byte TCP expects to receive

• Data offset: Size of header (measured in 4 bytes)
• Reserved for future use
• Window contains the number of bytes the receiver is willing to

accept (for flow control)
• Checksum for detecting errors in the TCP segment
• Urgent pointer points to the sequence number of the last byte of

urgent data in the segment
• Options: such as maximum segment size, window scaling, selective

acknowledgement, …

ITS 323 - Transport Protocols 16

TCP Header Format
• Flags (1 bit each, if 1 the flag is true or on):

– CWR: Congestion Window Reduced
– ECE: Explicit Congestion Notification Echo

• CWR and ECE are used on a special congestion control mechanism – we do not cover
this in ITS 323

– URG: segment carries urgent data, use the urgent pointer field
– ACK: segment carries ACK, use the ACK field
– PSH: push function
– RST: reset the connection
– SYN: synchronise the sequence numbers
– FIN: no more data from sender

• Note
– There is only one type of TCP packet

• However the purpose of that packet may differ depending on the flags set
• If SYN flag is set, we may call it a “SYN packet or TCP SYN”
• If the ACK flag is set, we may call it a “ACK packet”
• If the packet carries data, we may call it a “DATA packet”
• If the packet carries data and the ACK flag is set, it is both a DATA and ACK packet

ITS 323 - Transport Protocols

Segments, Bytes and Sequence Numbers

• TCP messages are called segments
• But TCP operates on a stream of bytes

– Sliding windows and sequence/ACK numbers refer to bytes (not
segments or messages)

Message1

Message2

Message3

Stream of bytes

byte 1 byte 2 byte 3000

Application sends 3 messages to TCP, each 1KB

TCP treats this as a stream of bytes – it does not care
(or know) that there are three different messages

TCP may send a set of
bytes (with header, H)

in a segment

1-60H

61-1050H

1051-2512H

2513-3000H

ITS 323 - Transport Protocols 18

Segments, Bytes and Sequence Numbers
A

DATA(Seq=1)

ACK(Ack=61)

B
1-60H

DATA(61)

ACK(1051)

DATA(1051)

ACK(2513)

DATA(2513)

ACK(3001)

61-1050H

1051-2512H

2513-3000H

This is a TCP segment carrying
Data, and Sequence Number 1.
This assumes the Initial Sequence
Number was 0.

This is a TCP segment carrying
no Data, but an ACK number of 61,
meaning the next byte expected will
have sequence number 61.

A TCP segment with 60 bytes
of data, plus header.

Although its not shown here, we can
“piggyback” an ACK on a DATA. That
is, a segment may carry DATA from B
to A, as well as an ACK which
acknowledges DATA received from A
to B.

Sequence Numbers and Duplicates
• If a segment is lost, then the sender will

timeout and retransmit that segment – only
one segment received at receiver

• But if an ACK is lost (the receiver has
received a segment), then the sender will
timeout and retransmit that segment – two
duplicate segments may be received at the
receiver

• Need a way to detect duplicate segments:
– Use increasing sequence numbers
– If two segments are received with the same

sequence numbers, then duplicates (discard
the second copy)

• But sequence numbers “wrap”
– 0, 1, 2, 3, …127, 0, 1, 2, …, 127, 0, ...

• To avoid incorrect detection of duplicates
(shown on right), sequence numbers must
be large enough so they do not wrap within
maximum segment lifetime

DATA

ACK

DATARetransmit Duplicate
incorrectly
accepted!

DATA(1)

ACK(1)

DATA(1) Duplicate
detected and

ignored

Retransmit

DATA(1)

ACK(1)

DATA(2)
Retransmit

Duplicate
accepted!

DATA(1)

DATA(1)

ACK(2)

Data incorrectly
ignored

20

Connection Establishment
• Before sending data, TCP needs to establish a “connection” between

source and destination
– TCP uses a client/server model for connection establishment

• Server waits and listens for TCP entity to connect (Passive)
• Client initiates the connection to a TCP entity (Active)
• Note: it is possible for two “Clients” to connect to each other (initiate connection at same

time)
• Note: Once the connection is setup, full duplex data transfer is possible; there is no

longer a concept of client/server (or master/slave) – each peer is the same
– A TCP connection is identified by:

• Source port, source IP address, destination port, destination IP address
– Allows many different computers (or even applications on one computer) to connect to the

same application on one computer
– E.g. a web server on port 80, IP address of 201.17.32.4 can have simultaneous connections

with multiple browsers:
» Browser on 130.160.25.5, port 49010
» Browser on 130.160.25.5, port 49011
» Browser on 120.52.16.24, port 49010

– How does the client know the IP address/port of server to initiate connection?
• IP address is either entered by user, or obtained from naming server (e.g. Domain

Name Service)
• Port number is either well known (by default web servers use port 80), entered by user,

or obtained from a naming server

ITS 323 - Transport Protocols 21

Connection Establishment
• What is the purpose of connection establishment?

– Allows each end to assure that the other exists
– Allows exchange or negotiation of optional parameters

• Specifically, for TCP, synchronise sequence numbers
– Both sides need an Initial Sequence Number, this is agreed upon during

connection establishment
– E.g. A chooses an ISN=10 and needs to inform B of this value; similarly, B

chooses an ISN=236 and needs to inform A of this value; if either A or B disagree
with the ISN chosen by the other, the connection is not established

– A and B choose there ISN independently
– Triggers the allocation of resources for the connection (e.g. allocate

buffer space in memory)
• TCP Connection Establishment

– Send segments with the SYN flag set
– Include the Initial Sequence Number in Sequence number field

• Connection establishment often called handshake
– Two Way Handshake: has problems!
– Three Way Handshake: used by TCP

ITS 323 - Transport Protocols 22

Two Way Handshake
A (active) B (passive)

A (active) B (active)

SYN(ISN=10)

SYN(ISN=236)

SYN
(ISN=10)

SYN
(ISN=236)

This shows a typical
scenario where a server (B)
listens for connections, and
a client (A) initiates the
connection.

This scenario is not so
common, but possible. Both
A and B initiate the
connection at the same
time.

These are TCP segments with
the SYN flag set and Sequence
Number set to the value of ISN.
The segments carry no data.

ITS 323 - Transport Protocols 23

Problems with Two Way Handshake
• Since we have unreliable network, use retransmissions if no

response is received
– If A sends a SYN, but receives no response from B after a timeout, then

A will send the SYN again
– May be possible for duplicate SYN’s to be received

• Easy to fix: ignore duplicate SYNs once a connection is open
(Established)

A B
SYN(ISN=10)

SYN(ISN=236)

SYN(ISN=10)
Retransmits the SYN, since has
not received SYN response yet

Receives a duplicate SYN: TCP will
ignore this duplicate SYN

ITS 323 - Transport Protocols 24

Problems with Two Way Handshake
• But may have an old SYN (from previous connection) arrive

• What went wrong? There is no explicit acknowledgement of each others
SYN and ISN

• Solution: Three way handshake, include explicit acknowledgements

A B
SYN(ISN=10)

SYN(ISN=236)

SYN(ISN=300)

This is an old SYN from a
previous connection. But B
must respond to it because
it has no connection open

Receives a duplicate SYN: TCP will
ignore this duplicate SYN. So B is
Expected next sequence number of
10+1 = 11 (not 301)

DATA(SN=301)

A sent a SYN with ISN 300, and
received a response. So A believes
the response acknowledged its
SYN, and so sends DATA with SN
of 301.

B expects 11, but receives 301
and so discards the segment. This
is a problem!

ITS 323 - Transport Protocols 25

TCP Three-way Handshake

• A sends segment with SYN flag set
– Sequence number = ISNA = i

• B sends segment with SYN and ACK flag set
– Sequence number = ISNB = j
– Ack number = i + 1

• A sends segment with ACK flag set, and includes the first DATA
– Sequence number = i+1
– Ack number = j+1

• Handles the loss of messages and receiving duplicates from old connections
• Note that the ACK sent by A can contain DATA

A B

SYN(ISN=236), ACK(301)

SYN(ISN=300)

DATA(Seq=301),ACK(237)

This is a single TCP packet with the SYN
flag set, the ACK flag set, but not carrying
any data

ITS 323 - Transport Protocols 26

Closing TCP Connection

• Closing a connection is similar to opening a connection: need an
Acknowledgement of the close (or FIN segment)

• It is possible for connection to be closed from A to B (so A cannot send
more data to B), but open in other direction (B can send data to B)

• Also possible for connection reset (abort) – no attempts are made to send
any outstanding data, and a RESET (RST) segment is sent.

ITS 323 - Transport Protocols 27

Data Transfer in TCP
• Once a connection is opened:

– Need reliable delivery of data
• Acknowledgements and retransmissions

– Do not overflow the receivers
• Flow control

– Do not overflow the network (e.g. routers along the path)
• Congestion control

• TCP using a sliding window mechanism
– For efficient transmissions
– To avoid overflow of receivers and network

• Although the detailed algorithms are specified for TCP, implementations can
still choose certain options, e.g.

– When does the TCP receiver pass the data to the receiving application?
– Does the TCP sender send a segment immediately when it has data from an

application, or does the TCP sender wait until it has a certain number of bytes to
send?

– In this lecture, we will cover some selected options – in fact, TCP
implementations may choose different options

• Usually it is a tradeoff between performance and implementation complexity

ITS 323 - Transport Protocols 28

TCP Sliding Window
• Operates on the byte level, not segment

– Three pointers (P1, P2, P3) to bytes in the data stream
• Sender and receiver maintain windows for each direction

• Variable sized window, based on advertised window

11 22 33 44 55 66 77 88 99 1010 1111

Current windowCurrent window

Sent andSent and
ACKedACKed

Sent but Sent but
not not ACKedACKed

SendSend
withoutwithout
delaydelay

Send when Send when
in windowin windowP1P1 P2P2 P3P3

ITS 323 - Transport Protocols 29

Reliability: ACK with Retransmit
• When TCP sender sends data segment, a timer is started for that segment

– If the timer expires (that is, timeout), the segment is retransmitted
– Retransmission occurs up to a maximum number of times, after which TCP gives

up and indicates an error to the application
• When TCP receiver receives data segment, it may send a cumulative

acknowledgement for the segment (and previous segments)
– The ACK indicates the sequence number of the next byte received
– E.g. If byte with sequence number 1000 received, ACK will indicate 1001 as next

expected byte
– The ACK number X can be interpreted as: “I have received all bytes up to and

including (X-1), and now expect to receive byte X”
– (We say may send: depending on the TCP implementation, it may choose to

send an ACK for every segment it receives, or to send an ACK to acknowledge a
group of segments)

• Improvement - Fast Retransmit:
– If 3 duplicate ACKs received, retransmit
– No need to wait for timeout

30

TCP Retransmission (Basic)
Host A Host B

Data (1001)

Data (3001)

Data (4001)

Data (5001)

Data (1)

ACK (1001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (6001)

Data (2001)

Ti
m

er

Lost segment

Retransmitted segment

Host A sending DATA which
is 1000 bytes in length. Assumes
the Initial Sequence Number
agreed was 0, hence first byte
is 1.

Data (2001)

Now Host B has received byte 1
through to byte 6000, and so next
expected is 6001.

Host B receives DATA
with bytes from 3001 to
4000. But it has not
received bytes 2001 to
3000, and so sends an
ACK indicating it is still
expected to receive
byte 2001.

In this example, Host B buffers all
bytes it receives, including 3001 to
6000.

31

TCP Retransmission (Fast Retransmit)
Host A Host B

Data (1001)

Data (3001)

Data (4001)

Data (5001)

Data (1)

ACK (1001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (2001)

ACK (6001)

Data (2001)

Ti
m

er

Lost segment

Third duplicate ACK is received
So retransmitted segment

Data (2001)

With Fast Retransmit, in many cases is a segment is lost, a retransmission will be triggered by receiving
three duplicate ACKs. So Host A does not have to wait for a timeout to retransmit. This is more efficient
than the basic scheme for retransmission.

ITS 323 - Transport Protocols 32

TCP Flow Control
• Aim: Prevent sender from overrunning capacity of receivers
• Needed for TCP because:

– Application cannot keep up with incoming data
– TCP cannot keep up with incoming segments

• Must take into account:
– Variable end-to-end round trip times (RTT)
– Interactions between TCP and IP and application protocols

• TCP flow control:
– Receiver notifies sender of amount of buffer space is left (that is, receiver says how much it

can receive)
• This is carried in the Window field of the TCP header, and called the Advertised Window

– The Sender cannot send more than the Advertised Window
• Example (next slide)

– Assumes TCP receiver has a 4000 byte buffer which is initially empty, and that the TCP
sender knows that the buffer is empty (that is, the previous advertised window was 4000)

– Shows how the receivers buffer (and hence advertised window) control the flow of data from
the TCP sender

– Also shows the independence between the Application writing/reading data and TCP sending
segments. If the Application writes data, it doesn’t mean that TCP will immediately send that
data.

Data (1)

ACK(2001) WIN=2000

TCP
Host B (Receiver)

Data (2001)

ACK=4001, WIN=0

ACK=4001, WIN=2000

Data (4001)

Application writes
2000 bytes

Sender is
blocked

Host A (Sender)
Application TCP Application

Application writes
3000 bytes

Application reads
2000 bytes

Application writes
1000 bytes

4000 byte buffer

Application reads
4000 bytes

TCP Congestion Control
• Flow control protects slow receiver from a fast sender

– Congestion control protects the network from a fast sender
• Without congestion control:

– To transport protocol, congestion is seen as increased delay
– Increased delay results in more retransmissions
– More retransmissions results in more congestion
– Leads to network collapse, no data can be successfully received

• TCP Congestion Control
– Uses implicit congestion detection

• Loss of segments imply congestion
– TCP assumes segments are not lost due to errors on links (since most networks TCP was

designed for had very few errors on links)
• If a TCP sender does not receive an ACK within a timeout (or receives 3 duplicate

ACKs), the TCP sender assumes there is congestion in the network and implements
appropriate congestion control

– Mechanisms used by TCP include:
• Slow Start: start by sending at a slow rate, and if no segments are lost, increase that

rate
• Multiplicative Decrease: if congestion is detected, decrease the rate you send by half

– Congestion control is implemented by:
• Maintaining second window at sender, called congestion window
• TCP sender determines how much it can send from:

– minimum (advertised window, congestion window)

ITS 323 - Transport Protocols 35

TCP in Details
• TCP is complex!

– We have introduced some basics of connection setup,
retransmissions and flow control

– There are many more details of these concepts
• Estimating timeouts, congestion control mechanisms, connection

setup options, sending/receive policies, …
– And there are different versions of TCP, each providing new

features and improvements, e.g.
• Original TCP - RFC 793 (1981)
• TCP Tahoe (1988)
• TCP Reno (1990)
• TCP NewReno (1995)

• Some more details of TCP may be covered in:
– ITS 327 and ITS 413
– Practical use of TCP will be illustrated in ITS 332 (Lab class)

User Datagram Protocol (UDP)

ITS 323 - Transport Protocols 37

User Datagram Protocol
• IP provides unreliable, connection-less service at network layer
• UDP provides same service to applications

– UDP messages can be lost, duplicated, or arrive out of order
– Adds multiplexing to support multiple applications

• That is, UDP supports port numbering the same way as TCP

• UDP is simple (standard describes it in 4 pages)

UDP DataUDP DataUDP UDP
HeaderHeader

IP IP
HeaderHeader

UDP DatagramUDP Datagram

IP DatagramIP Datagram

8 bytes8 bytes20 bytes20 bytes

ITS 323 - Transport Protocols 38

UDP Message Format
• 8 byte header + Data
• Length is count of bytes in header plus Data
• Checksum calculated over:

– UDP Header
– UDP Data
– Some parts from IP header such as Source and Destination IP address,

IP protocol type code (17 for UDP)

ITS 323 - Transport Protocols 39

Applications Using UDP
• Network management

– SNMP, DNS, BOOTP, DHCP

• Simple user protocols
– TFTP

• Multimedia applications (voice, video)
– Strict delay/jitter requirements make TCPs flow/congestion

control and error detection unsuitable
– Use UDP and own retransmission scheme if necessary
– Voice over IP: RTP over UDP over IP

	Transport Protocols
	Contents
	Where Are We?
	Host-to-Host Communications
	Transport Protocols
	Transport Protocols
	Transport Protocol Services
	Addressing and Multiplexing
	Ports and Multiplexing
	Ports and Multiplexing
	Ports and Multiplexing
	Transmission Control Protocol (TCP)
	TCP
	TCP Header Format
	TCP Header Format
	TCP Header Format
	Segments, Bytes and Sequence Numbers
	Segments, Bytes and Sequence Numbers
	Sequence Numbers and Duplicates
	Connection Establishment
	Connection Establishment
	Two Way Handshake
	Problems with Two Way Handshake
	Problems with Two Way Handshake
	TCP Three-way Handshake
	Closing TCP Connection
	Data Transfer in TCP
	TCP Sliding Window
	Reliability: ACK with Retransmit
	TCP Retransmission (Basic)
	TCP Retransmission (Fast Retransmit)
	TCP Flow Control
	TCP Congestion Control
	TCP in Details
	User Datagram Protocol (UDP)
	User Datagram Protocol
	UDP Message Format
	Applications Using UDP

