Internetwork Protocols

Dr Steve Gordon ICT, SIIT

Contents

- Basic Protocol Functions
- Internetworking with the Internet Protocol
- Internet Protocol Details
- IP Addresses

Basic Protocol Functions

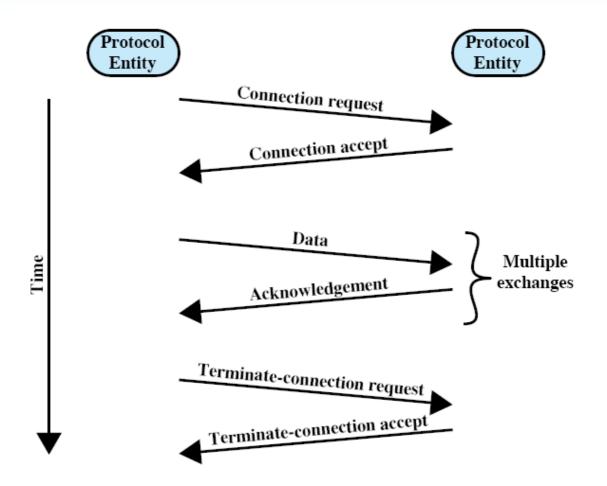
- There are some basic functions used by all protocols
 - Not every protocol implements every function
 - But often the functions are repeated (with different detail/purpose) at different layers in a stack
 - E.g. Data link layer has error control; Transport layer has error control
 - Functions are:
 - Encapsulation
 - Fragmentation and Reassembly
 - Connection control
 - Ordered delivery
 - Flow control
 - Error control
 - Addressing
 - Multiplexing
 - Transmission services

Basic Protocol Functions

• Encapsulation

- Virtually all protocols transfer data in blocks which include the data and control information (header/trailer)
- We have referred to the blocks as: messages, frames, datagrams, packets, ...
- A general name is a Protocol Data Unit (PDU)
- Adding a header (and/or trailer) to a PDU is called Encapsulation
- Encapsulation occurs at each layer (network layer PDU is encapsulated in a data link layer PDU)
- Fragmentation and Reassembly
 - Usually the size of a PDU used by protocol is limited
 - Fragmentation involves breaking a PDU into smaller blocks for transmission
 - Reassembly is the process at the receiver of combining the received small blocks and creating the original PDU

Size of PDUs


- Why break a message into smaller blocks?
 - The communication medium may only accept certain sizes
 - E.g. Ethernet has a maximum size of 1526 bytes; if you have 1MByte file to send, then must be fragmented
 - Error control may be more efficient with smaller PDUs
 - If you send 1 large PDU of 1MB and a single bit error occurs, you have to retransmit the entire 1MB
 - But if you send 1000 small PDUs of 1KB and a single bit error occurs, you only have to retransmit one 1KB PDU
 - Fair access to shared mediums (e.g. MAC protocols)
 - If a station can transmit an unlimited size PDU, the station can steal the medium from others
 - A smaller PDU may mean smaller buffers can be used at the receiver
- What is wrong with breaking a message into smaller blocks?
 - Since each block has a header added, the percentage of overhead will be greater with small PDUs
 - More time is spent processing small, numerous PDUs

5

Basic Protocol Functions

- Connection Control
 - A protocol may be connectionless or connection-oriented:
 - Connectionless: each PDU sent is treated independently by sender/receiver
 - Connection-oriented: for a set of PDUs, a connection (or association) is setup between sender and receiver before sending
 - Assumes the PDUs are associated with each other, e.g. a file
 - The connection has some parameters (such as maximum PDU size, encryption algorithms, error control parameters) associated with it
 - For connection-oriented, there are 3 phases:
 - Connection establishment (setup)
 - Data transfer
 - Connection termination (teardown)

Connection-Oriented Data Transfer

Basic Protocol Functions

• Ordered Delivery

- Usually a sequence of PDUs should be delivered to the receiver in order
 - E.g. a sender application has a file that is sent as 10 PDUs; the receiving application must receive the 10 PDUs in order to create the original file
- But networks can sometimes deliver PDUs out of order
 - E.g. in the Internet, one PDU may take one path, and the second PDU may take a different (shorter) path arriving first
- Ordering is often achieved using sequence numbers; each PDU is given a sequence number
 - The receiver then knows which order to reassemble the PDUs
 - The sequence number is carried in the header
 - Note that there is a finite number of bits available, hence the sequence number is limited
 - Usually "wrap" the sequence number
 - » 0, 1, 2, 3,, 126, 127, 0, 1, 2, ...

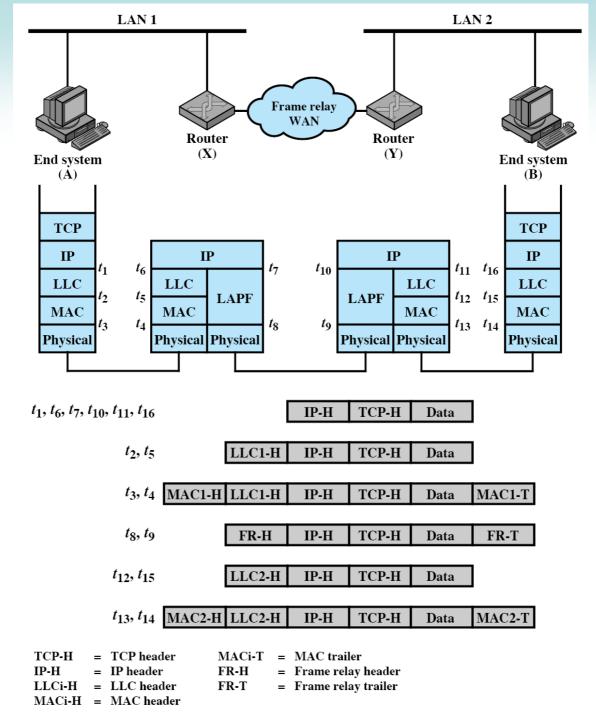
8

Basic Protocol Functions

- Flow Control
 - Limit the amount of data sent by transmitter (so don't overflow the receiver)
- Error Control
 - Guard against the damage or loss of data
- Addressing
 - Needed to identify communicating end-points at different levels
 - Network interfaces, software processes, users
- Multiplexing
 - Allow support of multiple connections on one system
- Transmission Services
 - Priority: given certain messages priority over others
 - Quality of service: guarantee performance for certain data/messages, e.g. minimum throughput required, maximum delay tolerated
 - Security: ensure the transmissions are secure

Internetworking with Internet Protocol

Need for Internetworking


- Need for users to access resources outside their local network
- Many different networks deployed
 - Differences in: requirements, owners, technologies
 - Not possible to merge them into a single network
- Therefore, aim to interconnect various networks so any two stations on any of the networks can communicate
- The resulting larger network is referred to as an *internet*
 - The networks are connected by routers and/or bridges
 - Some additional terminology:
 - Intranet: an internet used by a single organisation
 - Subnetwork: a constituent network of an internet
 - the Internet: the name of the internet using the Internet Protocol that is used in the world today
 - Example: SIIT many LAN's interconnected to form an internet; this is the SIIT intranet; the SIIT intranet is a subnetwork of the Internet
- The main form of internetworking today is using routers to form an connectionless internet, called the Internet

Requirements of an Internetworking Router

- Provide a link between networks
- Provide for routing and delivery of data between applications on different networks
- Provide an accounting service that keeps track of the use of the networks/routers, and maintains status information
- Provide services such that the constituent networks do not require modification. Hence must allow:
 - Different addressing schemes
 - Different maximum packet (PDU) size
 - Different network access mechanisms
 - Different timeouts
 - Error recovery
 - Status reporting
 - Routing techniques
 - User access control
 - Connection-oriented, connectionless

Internet Protocol for Internetworking

- The Internet Protocol (IP) meets some of these requirements
 - Other requirements are met by additional applications
- IP is a connectionless, network layer protocol
- IP was initially developed by US Department of Defence and published as RFC791 in 1981
 - It is now an Internet Standard produced by IETF, and various enhancements have been published and standardised

Operation of IP

Operation of IP

- A has data to send to B
 - The application on A generates data and passes a PDU to the transport layer (TCP), which then passes a PDU to IP
 - IP attaches a header, which includes the global IP address of B
 - The IP address has two parts:
 - Network portion: identifies the network of B
 - Host portion: identifies node B within the network
 - IP recognises B is on another network so it sends the PDU to its local router
 - IP sends the resulting PDU (or IP datagram) to LLC/MAC (t₁) which attach header/trailer
 - The Physical layer sends the bits to the router X
 - At Router X the receiving Physical/MAC/LLC process the PDU and send it to IP $(t_{\rm 6})$
 - IP looks at the destination address (B) and makes a routing decision
 - If B is connected directly to a network that router is attached to, then send to B
 - If B is not directly connected, send to a router (which one? Routing protocol)
 - If router does not know of address B, return an error message
 - In the example, router X sends over the WAN link to router Y (t_7)
 - Y performs the same steps as X; this time sending directly to B (t_{11})
 - IP at B receives the PDU (t_{16}) and realises it is the destination, hence passes the data to the application (via TCP)

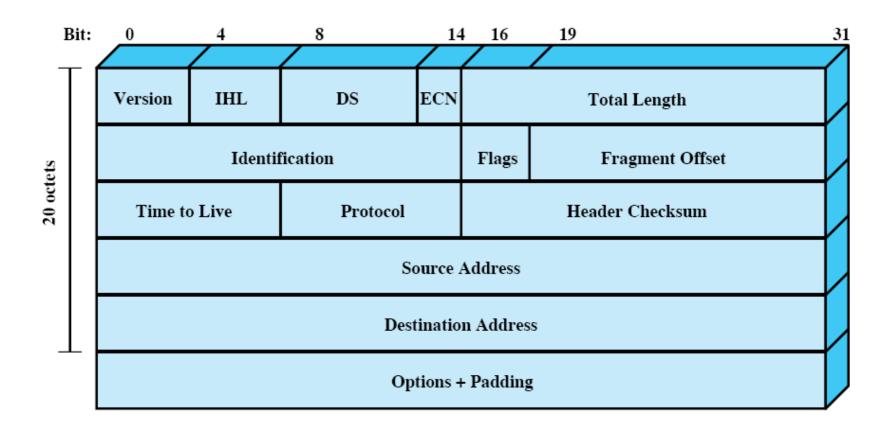
Design Issues for IP

- Routing
 - Each node (host and router) maintains a routing table, that lists:
 - For each possible destination network, the next router the datagram should be sent to
 - Routing tables may be static, but normally they are dynamic and created/updated by routing protocols
 - We know that a routing protocol can choose routes based on many criteria (number of hops, cost, capacity, delay, security, ...)
 - Datagrams between same source/destination pair may take different paths (routes)
 - There are several routing protocols in use today
 - Different protocols for different size networks

Design Issues for IP

- Datagram Lifetime
 - It is possible that a datagram could loop forever in an internet
 - Therefore, each datagram is given a lifetime; after it expires the datagram is no longer forwarded and deleted
 - Lifetime is implemented by hops
 - Datagram starts with Time To Live (TTL) of 255
 - Each router that forward the datagram (that is, each hop), the TTL is decremented by 1
 - If the TTL reaches 0, the datagram is deleted
- Fragmentation and Reassembly
 - Different constituent networks may have different maximum PDU sizes
 - IP routers fragment datagrams if necessary
 - Reassembly occurs at the destination host

Design Issues for IP


- Error Control
 - IP does not provide any guaranteed delivery
 - No retransmissions
 - If a router discards a datagram (e.g. the router has no more memory, or the datagram is in error), then the router will try to inform the source
- Flow Control
 - There are no complex flow control mechanisms
 - Only possible control is using ICMP to tell the sources to slow down (but not used much)
- Summary:
 - IP does not perform complex error control or flow control; instead leaves these functions to other layers/protocols
 - IP is relatively simple!

Internet Protocol Details

IP Overview

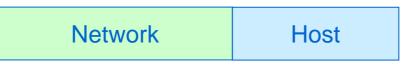
- IP is a network layer protocol
 - It is implemented on all hosts and routers in the Internet
 - For a computer to connect to the Internet, it must implement IP
- IP provides a simple send/receive service to the transport layer protocol
 - Send:
 - Transport layer sends data to the IP layer
 - IP adds a header, including source and destination address
 - IP sends the datagram (header + data) to Data Link layer
 - The Data Link layer destination is either the destination host or the next router in the path
 - Receive:
 - Data Link layer sends datagram to IP layer
 - IP checks
 - If destination, then IP removes header and sends data to transport layer
 - If not destination, then send datagram to next node in path
 - The protocol itself is quite simple: the main parts are the header format and addressing scheme

IP Header

Note: For our purposes, octet = byte

IP Header Fields

- Version: version number of IP; value is 4 (IPv4)
- Internet Header Length (IHL): length of header, measured in 4 byte words; minimum value is 5 (20 bytes)
- **DS/ECN** (or ToS): Used for quality of service control. Differentiated Service, Explicit Congestion Notification, Type of Service
- **Total Length**: total length of the datagram, including header, measured in bytes
- **Identification**: sequence number for datagram
- Flags: 2 bits are used for Fragmentation and Re-assembly, the third bit is not used
- **Fragment Offset**: Indicates where this fragment belongs in the original datagram (used for Fragmentation and Re-assembly)
- Time To Live: how long datagram should remain in internet
- **Protocol**: indicates the next higher layer protocol with a code
 - E.g. TCP = 6; UDP = 17; ICMP = 1

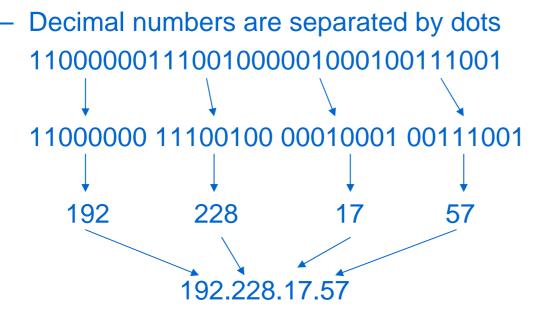

IP Header Fields

- Header Checksum: error-detecting code applied to header only (to check for errors in the header); recomputed at each router
- Source Address: IP address of source host
- **Destination Address**: IP address of destination host
- **Options**: variable length fields to include options
- Padding: used to ensure datagram is multiple of 4 bytes in length
- Data: variable length of the data. Maximum length is 65,535 bytes

IP Addresses

IP Addresses

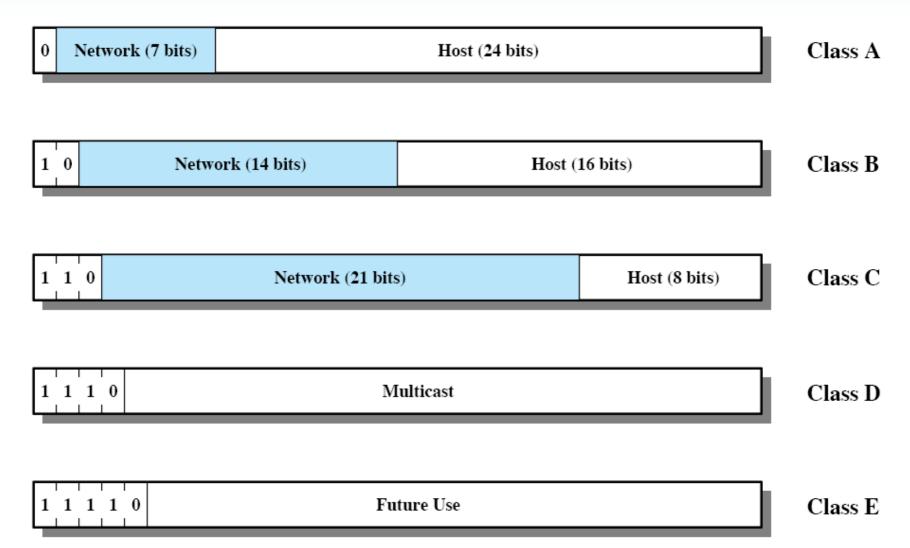
• IP addresses (used to identify source and destination) are 32-bit addresses generally consisting of network portion identifier and host portion identifier


- 32-bits gives 4.2x10⁹ possible values
- But IP addresses have different structures (and these have changed over time)
 - First, the set of addresses was separated into five different classes (Classful addressing)
 - Then in 1980's, for organisations to have multiple IP networks (e.g. SIIT Bangkadi is one network, SIIT Rangsit is another), subnet addressing was introduced
 - Then in 1990's, classless addressing was allowed so can fully utilise the address space

Why network and host portion?

- Splitting the IP address into two parts allows for hierarchical addressing. This makes routing in the global Internet possible!
- Example:
 - A reminder: routing protocols provide information to routers about how to reach destinations
 - E.g. "if the destination is D, then send to the next router R"
 - If we did not split the IP address into two ports (that is, flat addressing) then routers must know routes to *hosts*
 - "if the destination is *host H*, then send to the next router R"
 - But on a network, there may be 100's or 1000's of hosts
 - Worst case: Routers must know routes to every host on Internet (100,000,000+)
 - But with hierarchical addressing, routers only need to know routes to networks
 - "if the destination is *network N*, then send to the next router R"
 - Routers only need to know about hosts on their own network
 - Worst case: routers must know routes to every network on Internet (100,000)

Representing IP Addresses


- Writing (and remembering) 32 bits is difficult!
 1100000011100100001000100111001
- IP addresses are usually written in dotted decimal notation
 - Decimal number represents of the bytes of the 32 bit address

IP Address Classes

- Class A: suitable if few networks, many hosts
 - First bit is 0; network portion is 7 bits, host portion 24 bits
 - Note: network addresses with first byte 0000000 (0) or 01111111 (127) are reserved
 - Maximum of 126 networks, each with 16 million hosts
- Class B: medium number of networks, medium number of hosts
 - First 2 bits are 10; network portion 14 bits, host portion 16 bits
 - Maximum of 16384 networks, each with 65534 hosts
- Class C: many networks, each with a few hosts
 - First 3 bits are 110; network portion 21 bits, host portion 8 bits
 - Maximum of 2 million networks, each with 254 hosts
- Class D: use for multicast addressing
 - First 4 bits are 1110
- Class E: reserved for future use
 - First 5 bits are 11110

IP Address Classes

Special Cases for IP Addresses

- To identify a network (not an individual host), all binary 0's (decimal 0) is used in the host portion
 - For a host with IP address 130.17.223.4 (Class B), the network address is 130.17.0.0
- To identify broadcast (all hosts on a network, all binary 1's (decimal 255) is used in the host portion
 - On the network 130.17.0.0, to send to all 65534 hosts, the address 130.17.255.255 is used
- To identify the current computer, the address 127.0.0.1 is used

Obtaining an IP Address

- The Internet Assigned Numbers Authority (IANA) manages the assignment of IP addresses
 - If your organisation wants an IP address (or set of addresses) you obtain it through a local or national registry
 - The national registry obtains IP addresses from regional centre, e.g. Asia Pacific Network Information Centre (APNIC)
 - APNIC is assigned address spaces from IANA
- Example:
 - My new company, Steve's Super Solutions, needs IP addresses for its new IP network with around 20 to 30 hosts (and 1 router)
 - Most suitable address type is Class C because not likely to have more than 256 hosts in the network
 - My company is assigned the network address 197.100.7.0, this means I can have 254 computers on my network with addresses 197.100.7.1, 197.100.7.2, 197.100.7.3, ..., 197.100.7.254
 - The broadcast address (to send to all computers) is 197.100.7.255
- Problem with Classful Addresses:
 - If every organisation in the world wants a unique network address for each of its IP networks (remember some organisations have many IP networks), then not enough IP addresses!
 - Hence subnet addressing and, eventually, classless addressing were developed

Subnet Addressing

- Assume SIIT has four separate IP networks each with about 500 computers, assigned Class B addresses (maximum of 65534 hosts)
 - Bangkadi: 130.17.0.0, RS1: 130.18.0.0, RS2: 130.19.0.0, RS3: 130.20.0.0
- Using classful addressing, this can be wasteful of IP addresses: 262136 addresses, but only 2000 computers
- Subnet addressing uses an additional *subnet mask*, to separate a network into further subnetworks
 - Now three parts of address:

Network	Subnet	Host
---------	--------	------

- SIIT is assigned 130.17.0.0
 - SIIT network administrator decides to separate into 4 subnetworks (one for Bangkadi, three for Rangsit)
 - Applies a subnet mask to identify the subnet portion of address

Network, 130.17.0.0: Subnet mask, 255.255.224.0:
 10000010
 00010001
 0000000
 0000000

 1111111
 1111111
 11100000
 00000000

These 3 bits represent the subnetworks

Subnet Addressing

- Subnet portion of address has 3 bits, 8 values
 - Values 000 and 111 are reserved for local and broadcast addresses
 - So can represent 6 different subnets: 001, 010, 011, 100, 101, 110
 - (We only need 4 in our example)

Subnet 1	10000010 00010001 <mark>001</mark> 00000 00000000
Subnet 2	10000010 00010001 <mark>010</mark> 00000 00000000
Subnet 3	10000010 00010001 011 00000 0000000
Subnet 4	10000010 00010001 100 00000 0000000
Subnet 5	10000010 00010001 101 00000 0000000
Subnet 6	10000010 00010001 110 00000 00000000

• For example, the computers on Subnet 1 will have IP addresses:

130.17.32.1	10000010 00010001 001 00000 00000001
130.17.32.2	10000010 00010001 001 00000 00000010
130.17.32.3	10000010 00010001 001 00000 00000011
130.17.63.253	10000010 00010001 001 11111 1111101
130.17.63.254	10000010 00010001 001 11111 1111110

Classless Addressing

- Classful addressing: 3 main classes of addresses, each with limited number of networks and hosts
- Subnet addressing: allow each network to be further divided into subnetworks
- Classless addressing: no classes, instead the split between network portion and host portion can be anywhere
 - Need a "subnet mask" to identify the split
 - Allows many combinations of network/host size, therefore efficient use of IP addresses

IP address, 130.17.41.129: Subnet mask, 255.255.252.0: Network portion | Host portion

Network, 130.17.40.0:

10000010 00010001 00101000 0000000

- Used in the Internet today
- Must give the IP address and subnet address
- Subnet address can be in dotted decimal or a shorter notation:
 - 130.17.41.129/22 where 22 indicates the first 22 bits of subnet mask are 1's

Other Network Layer Functions

Internet Control Message Protocol

- IP is used for transferring datagrams between hosts
- ICMP is used for sending feedback about problems between routers and hosts
 - Error reporting examples:
 - Destination unreachable: if a router cannot send an IP datagram to the destination host (e.g. no route because a router or link is down, or the destination doesn't exist), then it returns an ICMP Destination Unreachable message to the source host
 - Echo and Echo Reply: used to test if two computers can communicate. Source sends an ICMP Echo message to destination; if destination receives ICMP Echo, it will respond with ICMP Echo Reply
 - Used by ping and other network tools
- ICMP uses IP to send messages

Address Resolution Protocol

- IP (network layer) uses IP addresses to identify each interface. These are logical addresses
- Each constituent network of an internet uses its own (data link layer) addressing mechanism, for example:
 - Ethernet uses IEEE 48 bit addresses
 - Frame Relay and ATM use path/channel identifiers
 - HDLC uses 8 bit addresses

These are physical addresses.

- A mapping must be made from an IP address to a physical address
 - The Address Resolution Protocol (ARP) is used in each constituent network to perform the mapping
 - ARP creates a table in each host in the local network that has a list of:
 - IP address and corresponding physical address

Internet Address	Physical Address
10.10.1.1	00-50-ba-be-34-cc
10.10.1.101	00-50-ba-87-61-eb
10.10.1.133	00-50-ba-be-34-d2

Other Features

• IPv6

- The current version is IPv4, uses 32 bit addresses; estimates that there will not be enough addresses in 5 to 15 years
- IPv6 has been designed to improve/replace IPv4
 - 128 bit addresses (enough for 10²⁸ addresses per person!)
 - Still not in widespread use; no strong motivation for ISPs to change from IPv4 to IPv6

• Multicasting

- Unicast is one-to-one communication
- Broadcast is one-to-all communication
- Multicast is one-to-many communication
 - Uses different parts of IP addresses and requires different routing
 - Useful for multimedia communication, e.g. video conferences, TV and audio streaming, collaborative applications
- Quality of Service Control
 - IP provides a "best effort" service: a datagram is sent with no guarantee of arriving at the destination within some time, or at some speed; also no priority is given to datagrams – everyone's data is treated the same
 - Many multimedia applications (video, voice) work better if they have guaranteed bandwidth/delay, or at least priority over other datagrams
 - QoS includes mechanisms controlling priority of transfer, and guaranteeing certain level of service