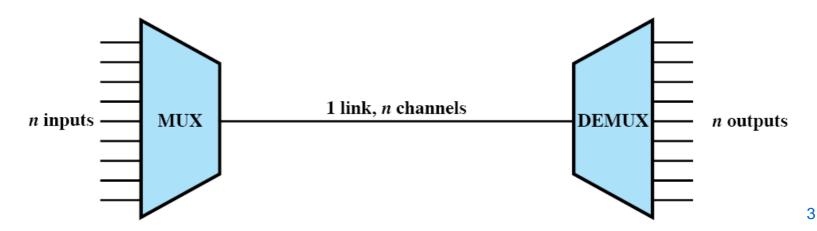
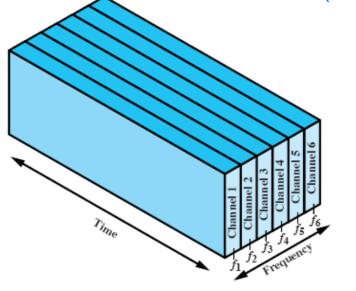
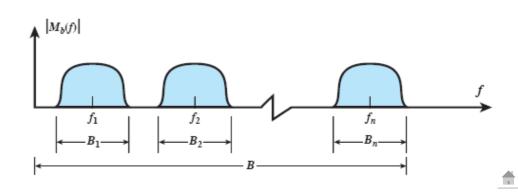

Multiplexing

Dr Steve Gordon ICT, SIIT

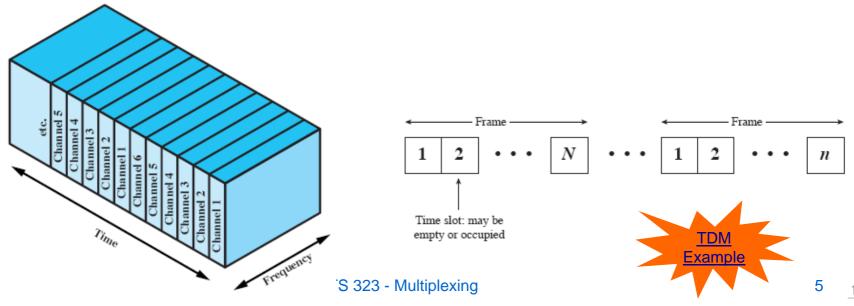

Contents (Short version)

- Frequency Division Multiplexing
- Time Division Multiplexing
 - Synchronous
 - Statistical
- Example Technologies

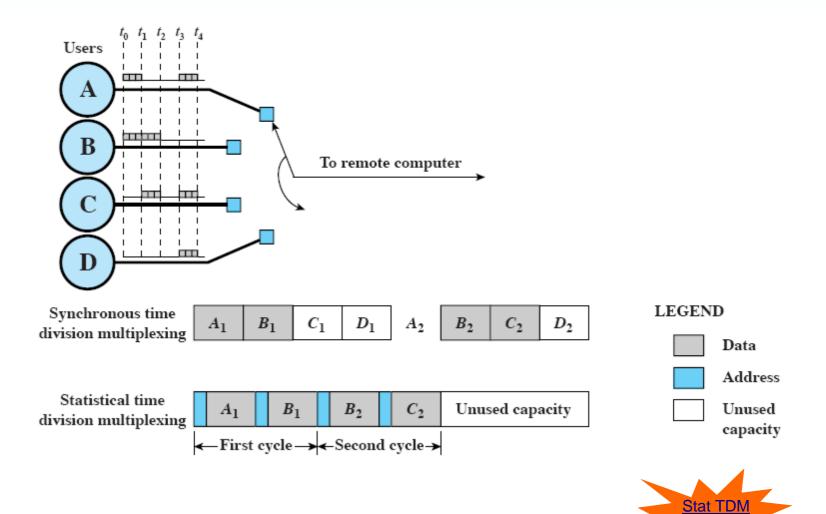

Multiplexing


- Allow multiple stations to share the capacity of one link
- Common on long-haul, high capacity, links
- Motivation:
 - The higher the data rate, the more cost-effective the transmission system is
 - Most individual communicating devices require small to modest data rate
 - Terminals, PCs: 10's to 100's kb/s
- Alternatives:
 - Frequency Division Multiplexing (FDM)
 - Time Division Multiplexing (TDM)
 - Statistical Time Division Multiplexing (STDM)

Frequency Division Multiplexing


- FDM used when medium bandwidth is more than required bandwidth of individual signals
 - Multiple signals sent at once, providing they use different carrier or centre frequencies, and are sufficiently spaced apart
 - If not separated sufficiently, then signals will interfere with each other (errors at receiver)
 - Each signal on a carrier frequency is called a channel
 - Example: many TV signals of 6MHz can be carried on a 500MHz coaxial cable (that is, cable TV)

Synchronous Time Division Multiplexing


- Carry multiple signals on transmission system by interleaving each signal in time
 - Interleaving either at bit level of blocks (bytes)
 - Output data rate must be greater than the sum of the input data rates at transmitter
 - Synchronous TDM since slots are pre-assigned to sources and fixed

Statistical TDM

- In Synchronous TDM, many slots are wasted
 - If a source has no data, or not the full number of sources, then an empty slot is "sent"
- Asynchronous or Statistical TDM allocates time slots dynamically based on demand
 - If a source has no data, than the multiplexer can send data from another source
 - Multiplexer scans input lines and collects data until frame full
 - Line data rate lower than aggregate input line rates
 - Assumes that the average input data is lower than line data rate
 - However, may have problems in peak periods (that is, when all inputs produce peak data)
 - Must buffer inputs, causing possible delays and dropped data

Synchronous vs Statistical TDM

ITS 323 - Multiplexing

Example

7

Example Technologies

• FDM

- Analog telephone networks were built using FDM based on 4KHz voice channels
 - A "group" line can carry 12 voice calls
 - A "supergroup" line can carry 5 groups, and so on
- Television distribution
- ADSL combines voice and data onto a telephone line
 - Asynchronous Digital Subscriber Line
- Synchronous TDM
 - Digital networks for telephony and data use TDM
 - Plesionchronous Digital Hierarchy (PDH)
 - International System (E) and US system (T)
 - Older networks over copper
 - Synchronous Digital Hierarchy (SDH or SONET)
 - Current networks between cities and within cities, using optical fibre
- Statistical TDM
 - Asynchronous Transfer Mode (ATM)
 - Used to connect networks with ISP and large organisation, e.g. within city, country
 - Can be used with SDH; typical speeds of 155Mb/s and 620Mb/s

Typical ADSL Speeds					
Name	Mb/s				
E1	2				
E2	8				
E3	34				
E4	140				

PDH Speeds		SDH Speeds	
Name	Mb/s	Name	Mb/s
E1	2	STM-1	155
E2	8	STM-4	620
E3	34	STM-16	2500
E4	140	STM-64	10000

8