Data Link Control Protocols

Dr Steve Gordon ICT, SIIT

Contents

- Flow Control
 - Stop-and-wait
 - Sliding Window
- Error Control
 - Stop-and-wait ARQ
 - Go-Back-N ARQ
 - Selective-Reject ARQ
- High Level Data Link Control (HDLC)

	-
Concept	

Technology

Data Link Control Protocols

- Need layer of logic above Physical Layer
 - Physical layer concentrates on sending signals over transmission link
 - More control and management is needed to send data over data communications link
 - Frame synchronization: start and end of each frame
 - Flow control: ensure sender does not send too fast for receiver
 - Error control: correct bit errors introduced by transmission system
 - Addressing: must specify identity of two stations communicating
 - Control and data: receiver must distinguish between control and data information
 - Link management: setup and maintain the link
 - Hence, data link layer (and data link control protocols)

Flow Control

Stop-and-Wait Sliding Window

Flow Control

• Receivers typically have a finite amount of memory (buffer space) to store received data before processing

- Flow control aims to ensure sending entity does not overwhelm receiving entity
 - by preventing buffer overflow
- Influenced by:
 - transmission time
 - time taken to emit all bits into medium
 - propagation time
 - time for a bit to traverse the link
- Assume there are no errors but varying delays

Error-Free Frame Transmission

Stop and Wait Flow Control

- Rules:
 - Source transmits a frame
 - Destination receives frame and replies with an acknowledgement (ACK)
 - Source waits for ACK before sending next frame
 - Destination can stop the flow of data by not sending ACK
- Works well for a few large frames
- Stop and wait becomes inadequate if large block of data is split into small frames
 - Large blocks of data are split into small frames for several reasons:
 - Buffer size of the receiver may be limited
 - Larger frames lead to longer transmission times and higher chance of frame error and large amount of data to be retransmitted
 - On shared mediums (e.g. LAN), usually only want one station to occupy the medium for short period of time

Stop and Wait Link Utilization

• The number of bits on a link at an instance of time if the link is fully occupied is (bit length of link)

– B = Rate x (distance / Velocity)

- If B is greater than the frame length, then Stop and Wait is inefficient
 - Assume transmission time is normalised to 1, and propagation delay is a = B / L where L is length of frame in bits
 - If a > 1 (that is, B is greater than frame length) the link is underutilized (inefficient)
 - Corresponds to links with high data rates and/or large distance between transmitter and receiver

Stop and Wait Link Utilization

Sliding Window Flow Control

- Stop and Wait only allows 1 frame to be in transit
- Sliding Window allows multiple numbered frames to be in transit
 - Receiver has buffer for W frames
 - Transmitter sends up to W frames without receiving ACK
 - Each frame has a sequence number, bounded by size of field (k) and numbered modulo 2^k
 - Maximum window size is 2^k -1
 - ACK from receiver includes sequence number of the next frame expected
 - Receiver can ACK frames without permitting further transmission (Receive Not Ready)
 - Must send a normal acknowledge to resume
 - If have full-duplex link, can piggyback ACKs on data

Sliding Window Components

Receiver's perspective

Sliding Window Example

Error Control

Stop-and-Wait Go-Back-N Selective-Reject

Error Control

Stop-and-Wait ARQ

- Based on stop-and-wait flow control:
 - Source transmits a single frame, and starts timer for that frame
 - Source waits for ACK
 - Destination:
 - If received frame damaged, discard it
 - Source has timeout:
 - If timer reaches maximum value before ACK is received, then retransmit the frame
 - If damaged ACK is received, source will not recognize it
 - Source will retransmit
 - Destination will receive two copies of the frame
 - Hence, source labels frames with 0 or 1, and destination uses alternate numbering in ACKs: ACK0 acknowledges receipt of frame 1 and ACK1 acknowledges receipt of frame 0

Stop-and-Wait ARQ

- Example shows lost Data packet (PDU) and lost ACK
- Advantage: simple
- Disadvantage: inefficient

Go-Back-N ARQ

- Based on sliding window flow control
 - If no error, ACK as in sliding window (ACK is called Receive Ready, RR, and contains sequence number of next expected frame)
 - Use window to control number of outstanding frames
 - If error, reply with negative ACK (rejection, REJ)
 - Destination will discard that frame and all future frames until error frame received correctly
 - Transmitter must go back and retransmit that frame and all subsequent frames
 - Destination receives damaged frame *i*
 - If destination also receives frame *i*+1, will send REJ *i*, and source must retransmit *i* and all subsequent frames
 - If destination does not respond, source will not receive REJ after timeout, source will send RR with P bit set to 1. This means destination must send a RR.
 - When sending RR, source also sets a timer if no response received, then source will try again, up until a maximum number of times (after which it returns an error)
 - Maximum window size: 2^k -1

Selective Reject ARQ

- Also called selective retransmission
 - Only frames that are rejected or timeout are retransmitted
 - Subsequent frames are accepted by the destination and buffered
 - Maximum window size: 2^(k-1)
- Minimizes retransmission
 - Destination must maintain large enough buffer
 - More complex logic in transmitter, hence less widely used
- Useful for satellite links with long propagation delays

Go-Back-N vs **Selective-Reject**

High Level Data Link Control

High Level Data Link Control (HDLC)

- An important data link control protocol
 - Many other data link protocols are based on HDLC
 - Specified as ISO 33009, ISO 4335
- Three station types:
 - Primary controls operation of link
 - Secondary under control of primary station
 - Combined issues commands and responses
- Two link configurations
 - Unbalanced 1 primary, multiple secondary
 - Balanced 2 combined stations
- Three transfer modes:
 - Normal Response Mode (NRM)
 - unbalanced configuration, primary initiates transfer
 - used on multi-drop lines, e.g. host + terminals
 - Asynchronous Balanced Mode (ABM)
 - balanced configuration, either station initiates transmission, has no polling overhead, widely used
 - Asynchronous Response Mode (ARM)
 - unbalanced configuration, secondary may initiate transmit without permission from primary, rarely used

HDLC Frame Structure

- Synchronous transmission of frames
- Single frame format used
 - Header fields: Flag, Address, Control
 - Payload: Information
 - Trailer fields: FCS, Flag
- Some fields are extendable: allow larger sizes for different address and sequence number schemes

Flag Fields and Bit Stuffing

- Delimit frame at both ends with 01111110 seq
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing flag seq 01111110
 - 0 inserted after every sequence of five 1s
 - if receiver detects five 1s it checks next bit
 - if next bit is 0, it is deleted (was stuffed bit)
 - if next bit is 1 and seventh bit is 0, accept as flag
 - if sixth and seventh bits 1, sender is indicating abort

Original Pattern:

111111111111011111101111110

After bit-stuffing

Address Field

- Identifies secondary station that sent or will receive frame
- Usually 8 bits long
- May be extended to multiples of 7 bits
 LSB indicates if is the last octet (1) or not (0)
- All ones address 11111111 is broadcast

Control Field

- Different for different frame type
 - Information data transmitted to user (next layer up)
 - Flow and error control piggybacked on information frames
 - Supervisory ARQ when piggyback not used
 - Unnumbered supplementary link control
- First 1-2 bits of control field identify frame type

Control Field

- Use of Poll/Final bit depends on context
 - In command frame is P bit set to1 to solicit (poll) response from peer
 - In response frame is F bit set to 1 to indicate response to soliciting command
- Sequence number usually 3 bits
 - can be extended to 8 bits as shown below

	1	2	3 4	4 5	б	7	8	9	10	11	12	13	14	15	16
Information	0	N(S)						P/F	N(R)						
Supervisory	1	0	s	0	0	0	0	P/F				N(R)			

Information and FCS Fields

- Information Field
 - in Information and some Unnumbered frames
 - must contain integral number of octets
 - variable length
- Frame Check Sequence Field (FCS)
 - used for error detection
 - either 16 bit CRC or 32 bit CRC

HDLC Operation

- Consists of exchange of information, supervisory and unnumbered frames
- Have three phases
 - Initialization
 - by either side, set mode & seq
 - Data transfer
 - with flow and error control
 - using both I & S-frames (RR, RNR, REJ, SREJ)
 - Disconnect
 - when ready or fault noted

HDLC Operation Example

HDLC Operation Example

