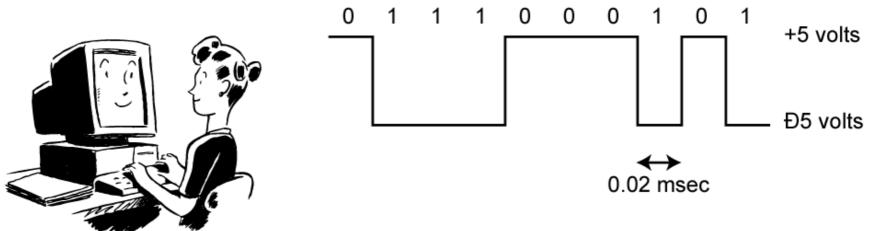

Signal Encoding Techniques

Dr Steve Gordon ICT, SIIT

Contents

- Digital Data, Digital Signal
- Digital Data, Analog Signal
- Analog Data, Digital Signal
- Analog Data, Analog Signal

Signal Encoding Techniques


f

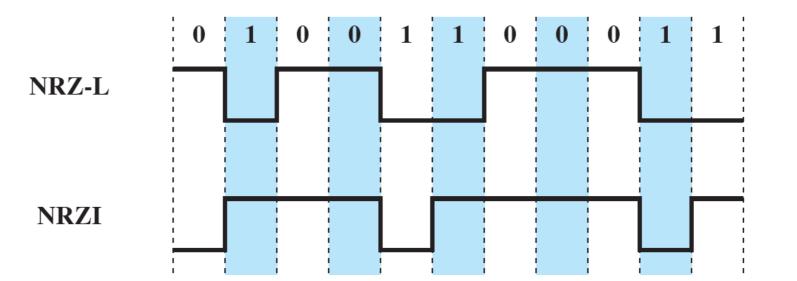
Four Different Options

	Analog Signal	Digital Signal
Analog Data	Two alternatives: (1) signal occupies the same spectrum as the analog data; (2) analog data are encoded to occupy a different portion of spectrum.	Analog data are encoded using a codec to produce a digital bit stream.
Digital Data	Digital data are encoded using a modem to produce analog signal.	Two alternatives: (1) signal consists of two voltage levels to represent the two binary values; (2) digital data are encoded to produce a digital signal with desired properties.

Digital Data, Digital Signal

- Digital signal
 - discrete, discontinuous voltage pulses
 - each pulse is a signal element
 - binary data encoded into signal elements

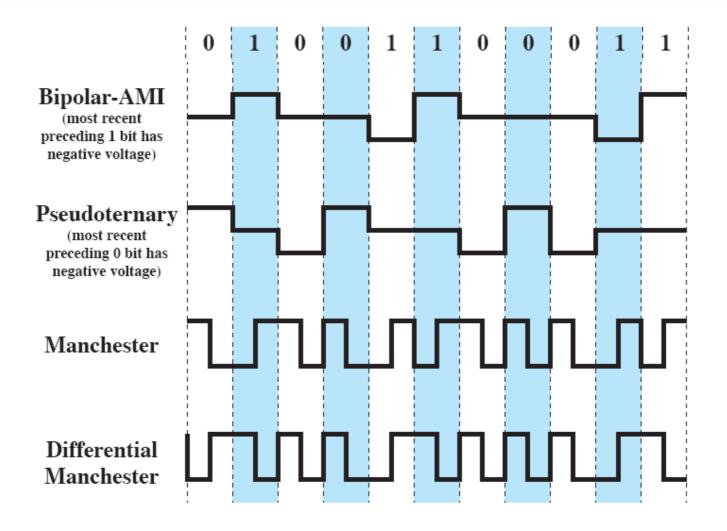
ITS 323 - Signal Encoding Techniques


5

Interpreting Signals

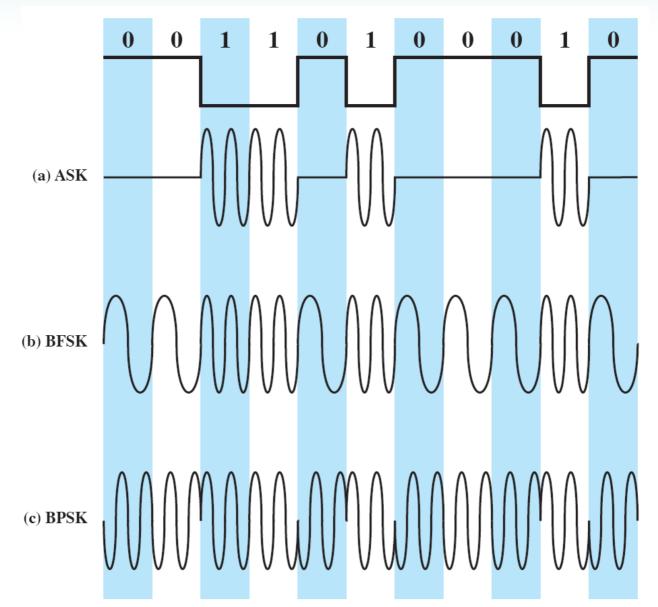
- A receiver needs to know
 - Timing of bits when does the bit start and end?
 - Signal levels when is it a 0 or 1?
- Factors affecting signal interpretation
 - Signal to noise ratio (SNR)
 - Data rate
 - Bandwidth
 - Encoding scheme
- Encoding Schemes:
 - Define the sequence of high and low signals to transmit 0's and 1's. Why?
 - Can shape the output spectrum to be more efficient
 - Detect errors
 - Avoid errors due to noise
 - Simplify digital circuits (hence lower cost)
 - Examples: Non-return to Zero (NRZ); Alternate Mark Inversion (AMI); Manchester; B8ZS; HDB3; …

Non-Return to Zero (NRZ)

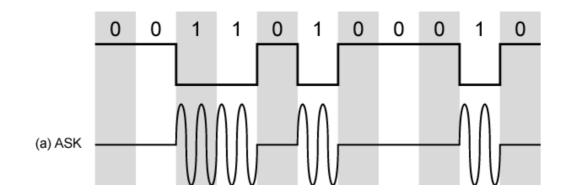

- Non-Return to Zero Level (NRZ-L)
 - Negative voltage represents binary 1
 - Positive voltage represents binary 0
 - (or other way around)
- A variant: NRZ Invert on ones (NRZI)
 - A transition (from high to low or low to high) represents binary 1
 - No transition represents binary 0

Digital Signal Encoding Formats

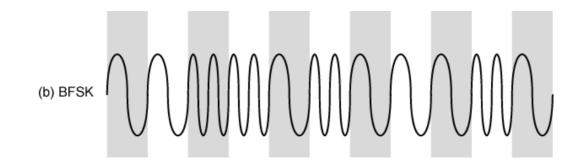
- Nonreturn to Zero-Level (NRZ-L)
 - 0 = high level
 - 1 = low level
- Nonreturn to Zero Inverted (NRZI)
 - 0 = no transition at beginning of interval (one bit time)
 - 1 = transition at beginning of interval
- Bipolar-AMI
 - 0 = no line signal
 - 1 = positive or negative level, alternating for successive ones
- Pseudoternary
 - 0 = positive or negative level, alternating for successive zeros
 - 1 = no line signal
- Manchester
 - 0 = transition from high to low in middle of interval
 - 1 = transition from low to high in middle of interval
- Differential Manchester
 - Always a transition in middle of interval
 - 0 = transition at beginning of interval
 - 1 = no transition at beginning of interval
- B8ZS
 - Same as bipolar AMI, except that any string of 8 zeros is replaced by a string with two code violations
- HDB3
 - Same as bipolar AMI, except that any string of 4 zeros is replaced by a string with one code violation


Digital Signal Encoding Formats

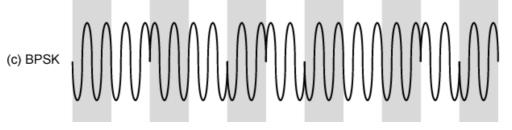
Digital Data, Analog Signal


- Main use is public telephone system
 - Has frequency range of 300Hz to 3400Hz
 - Use modem (modulator-demodulator)
- Encoding techniques
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)
 - Phase Shift Keying (PSK)

Modulation Techniques


Amplitude Shift Keying

- Encode 0/1 by different carrier amplitudes
 - Usually have one amplitude zero
- Susceptible to sudden gain changes
- Inefficient
- Used for
 - up to 1200bps on voice grade lines
 - very high speeds over optical fiber

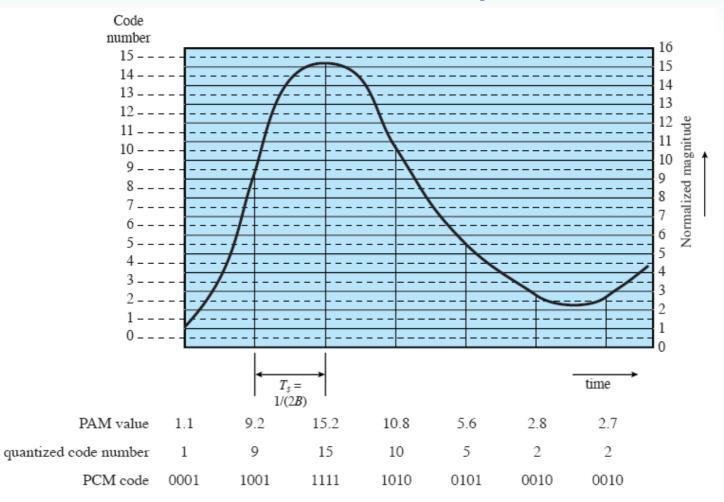

Binary Frequency Shift Keying

- Most common is binary FSK (BFSK)
- Two binary values represented by two different frequencies (near carrier)
- Less susceptible to error than ASK
- used for
 - up to 1200bps on voice grade lines
 - high frequency radio
 - even higher frequency on LANs using co-ax

Phase Shift Keying

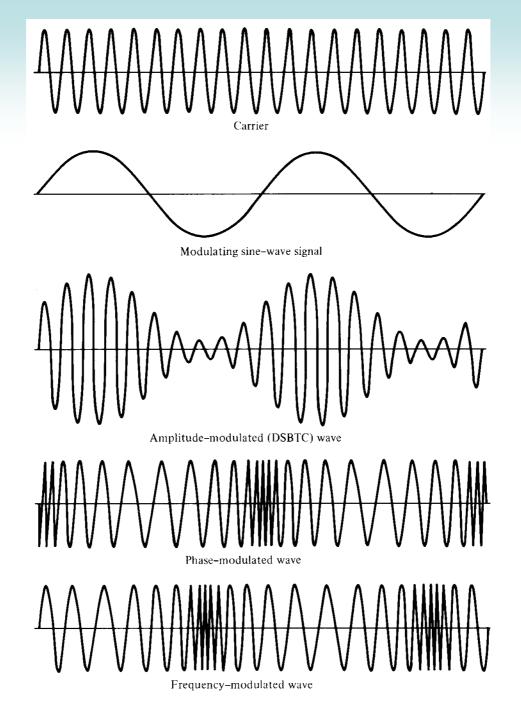
- Phase of carrier signal is shifted to represent data
- Binary PSK
 - two phases represent two binary digits

- Differential PSK
 - phase shifted relative to previous transmission rather than some reference signal
- Quadrature PSK
 - Shift phase by 90 degrees; a signal represents two bits (00, 01, 10, 11) depending on phase shift (45°, 135°, 225°, 315°)
 - More efficient: carry more information (bits) per signal
- Quadrature Amplitude Modulation
 - Combines ASK and PSK


Analog Data, Digital Signal

- Involves digitization of analog signal
 - Convert analog data to digital data
 - Then send digital data using, for example:
 - NRZ-L or similar code
 - Or convert to analog signal and send
- Analog to digital conversion done using a codec
 - Pulse Code Modulation
 - Delta Modulation
 - Simpler than PCM, but not as good performance

Pulse Code Modulation (PCM)


- PCM is used to convert analog data to digital data
- Sampling theorem:
 - "If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all information in original signal"
 - eg. 4000Hz voice data, requires 8000 samples per sec
- Sampling an analog signal (data) creates Pulse Amplitude Modulation (PAM) samples
- Each PAM sample is assigned a code (Pulse Code Modulation)
- Performance:
 - Typically, good voice reproduction requires 128 levels or 7 bits, hence 56kb/s
 - Using Nyquist, requires 28kHz of bandwidth

PCM Example

Analog Data, Analog Signals

- Modulate carrier frequency with analog data
- Why modulate analog signals?
 - higher frequency can give more efficient transmission
 - permits frequency division multiplexing (covered later)
- Types of modulation
 - Amplitude (AM)
 - Frequency (FM)
 - Phase (PM)

