Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Secure Client Applications

Networking

Sirindhorn International Institute of Technology Thammasat University

> Prepared by Steven Gordon on 26 June 2014 Common/Reports/secure-client-apps.tex, r900

Networking

Acronyms and Abbreviations

Secure apps	5	
	CA	Certificate Authority (same as TA)
Aims	HTTP	HyperText Transfer Protocol
Crypto Basics	HTTPS	HTTP over SSL
HTTPS	PGP	Pretty Good Privacy
Secure Email	PR	Private key
	PU	Public key
	SSL	Secure Sockets Layer (same as TLS)
	TA	Trusted Authority (same as CA)
	ТСР	Transmission Control Protocol
	TLS	Transport Layer Security (same as SSL)

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Aims

Contents

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Networking

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Workshop Aims

- Understand security limitations of common Internet applications
- Increase awareness of "extensions" of Internet applications that increase security
- Learn about techniques for enhancing your communication secrecy and privacy

Network	d	ng
---------	---	----

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Applications and Extensions

Web Browsing

- ► Secrecy: HTTPS and certificates, HTTPS Everywhere
- ► Privacy: AdBlock Plus, Ghostery, FoxyProxy, Hola ...
- ► Safety: NoScript, ...

Email

 Signatures and Secrecy: OpenPGP, Enigmail, Thunderbird

File Encryption

- ► File:
- ► Disk: TrueCrypt, BitLocker

Networking Secure apps	Contents	
Aims		
Crypto Basics	Aims	
HTTPS	AIIIS	
Secure Email		
	Cryptography Basics	

HTTPS and Digital Certificates

Secure Email

5

Secure apps

Crypto Basics

HTTPS

Secure Email

Cryptography

Symmetric Key Cryptography

- ► Source: Encrypt message with secret key K
- Destination: must also know K; decrypts data with K
- Pro: Fast for large amounts of data
- Con: Requires K to be securely exchanged in advance

Public Key Cryptography

- Each node has a (public, private) key pair, (PU_a, PR_a)
- Encrypt a message with one key in pair, can only be decrypted with other key in key pair
- Pro: Does not require exchange of secrets
- Con: Slow for large amounts of data

Networking

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Public Key Cryptography

Public Key Cryptography for Confidentiality

- Source: Encrypt message with public key, PU_{dst} of destination
- ► Destination: decrypts data with *PR*_{dst}
- Only destination can decrypt it

Public Key Cryptography for Signatures

- ► Source: Encrypt message with own private key, *PR*_{src}
- ► Destination: decrypts data with *PU*_{src}
- Only source could have sent it

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Aims

Cryptography Basics

HTTPS and **Digital** Certificates

Secure Email

Networking

Secure apps

HTTP and HTTPS

Aims

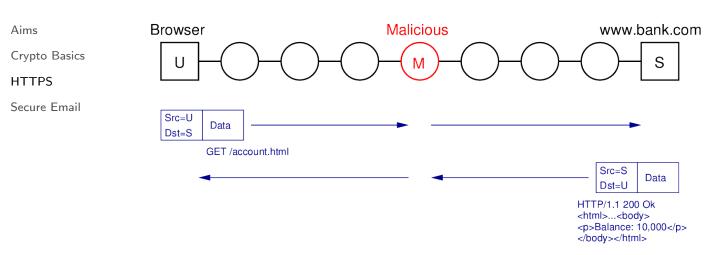
Crypto Basics

HTTPS

Secure Email

- Send request to web server; returns the web page
- Malicious use can intercept/modify data

HTTPS


HTTP

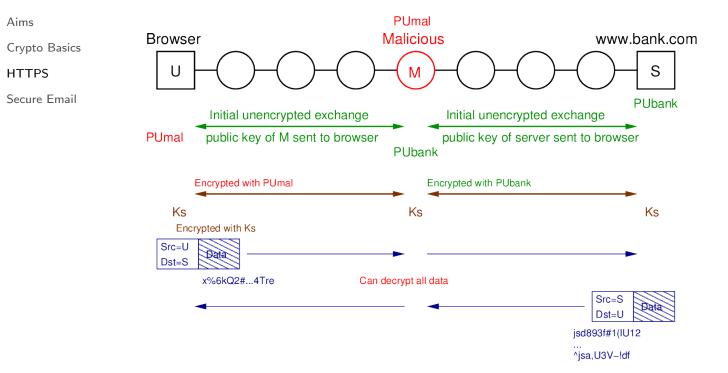
- Establish secure SSL/TLS connection between browser and server; then use HTTP
- Data is encrypted; interception/modification not possible
- ▶ But ...

9

Secure apps

HTTP: Interception is Easy

11


Networking **HTTPS:** Data is Encrypted Secure apps Malicious www.bank.com Browser Aims Crypto Basics S U Μ HTTPS PUbank Secure Email Initial unencrypted exchange PUbank public key of server sent to browser Encrypted exchange of secret key Encrypted with PUbank Ks Ks Encrypted with Ks Src=U Data Dst=S x%6kQ2#...4Tre Src=S Data Dst=U jsd893f#1(IU12

^jsa,U3V–!df

- Public key cryptography used to exchange a secret key
- Data encrypted with secret key

HTTPS: Man-in-the-Middle Attack

Secure apps

Networking

Secure apps

Aims

Crypto Basics

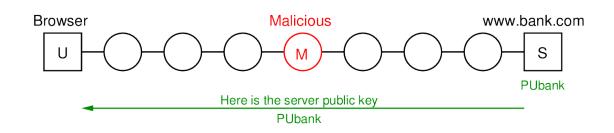
HTTPS

Secure Email

HTTPS Encryption

- To encrypt data, browser and server must exchange a secret key
- But cannot send secret key, unencrypted, across Internet
 - Use public-key cryptography for secret key exchange
- Server has (public, private) keypair
 - Encrypt with one, can only decrypt with the other in pair
- Server sends its public key to browser, then used to encrypt secret key

Secure apps


Aims

Crypto Basics

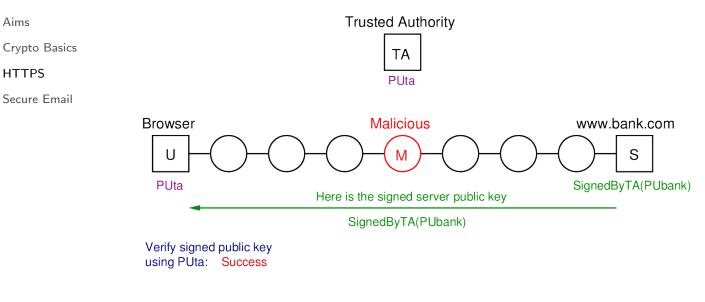
HTTPS

Secure Email

HTTPS: Challenge is Public Key Distribution

How does browser know received public key is that of the server?

HTTPS: Challenge is Public Key Networking Secure apps Distribution Aims Crypto Basics **PUmal** HTTPS Malicious www.bank.com Browser Secure Email U S Μ PUbank Here is the server public key Here is the server public key **PUmal** PUbank


How does browser know received public key is that of the server?

HTTPS: Trusted Authority Signs Key

Networking Secure apps

Aims

HTTPS

- Trusted Authority: Another entity trusted by the browser and server
- Trusted Authority "signs" public key of server
- Browser "verifies" received public key using TA's public key


17

Networking **HTTPS:** Trusted Authority Signs Key

Secure apps

Aims

HTTPS

Verify signed public key using PUta: FAIL!

- If malicious node modifies signed public key of server, the verification at browser will detect it
- A public key signed by someone else is called a digital certificate

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Digital Certificates in Practice

How does a server obtain a certificate?

- Prove identity to CA by:
 - Domain validation
 - Extended validation
- Free and commercial services

How does browser obtain CA certificate?

- Pre-loaded into browsers
- Hierarchy of certificates is supported

What if CA certificate is not in browser?

Browsers commonly present warning to user

Networking

Secure apps

Security Issues with Digital Certificates

- Identity verification of server (owners)
- Security of CA private key
- Pre-loaded certificates by browser publisher
- Response when invalid certificate received
- Algorithms used in certificates should be strong

Aims

Crypto Basics

HTTPS

Secure Email

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Aims

Cryptography Basics

HTTPS and Digital Certificates

Secure Email

Networking

Secure apps

Aims

Crypto Basics

HTTPS

Secure Email

Secure Email

- Email messages originally only text with pre-defined headers (To, From Subject, CC, ...)
- Multipurpose Internet Mail Extensions (MIME) allows for different message and header formats: different character sets, attachments, new headers
- ► Secure email requirements:
 - 1. Authentication: receiver can confirm the actual sender, and that content is not modified
 - 2. Confidentiality: only sender/receiver can read the contents
- ► Two common ways to implement secure email:
 - 1. S/MIME
 - 2. OpenPGP
- Both use similar approach: sender signs message with private key, encrypts message with symmetric key encryption using a secret key, and encrypts the secret key using recipients public key

Secure apps

Aims

Crypto Basics

HTTPS

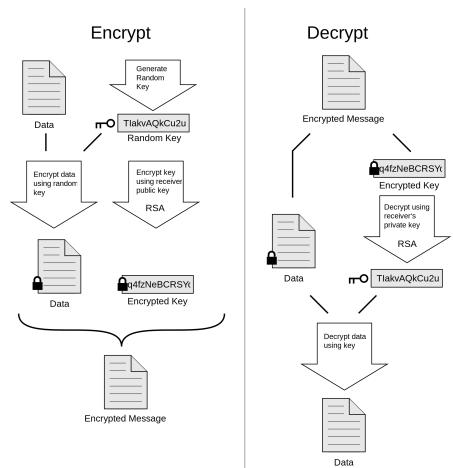
Secure Email

OpenPGP

- Pretty Good Privacy (PGP) developed by Phil Zimmerman in 1991
- IETF standardised as OpenPGP
- One of first and most widely used applications of public-key cryptography
- Implementations:
 - Original by Zimmerman: Symantec
 - ► GNU Privacy Guard (GPG)
 - Many email clients (either direct or through plugins, e.g. Enigmail, GPG4Win)
- ► OpenPGP vs S/MIME:
 - OpenPGP: public keys distributed informally: phone, websites, email
 - S/MIME: public keys distrubuted as X.509 digital certificates

Networking

Secure apps


PGP Operation: Concept

Aims

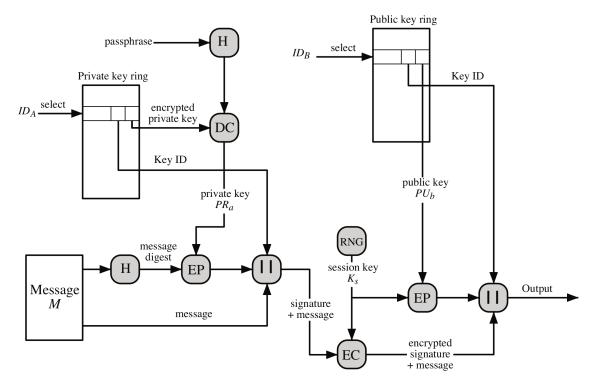
Crypto Basics

HTTPS

Secure Email

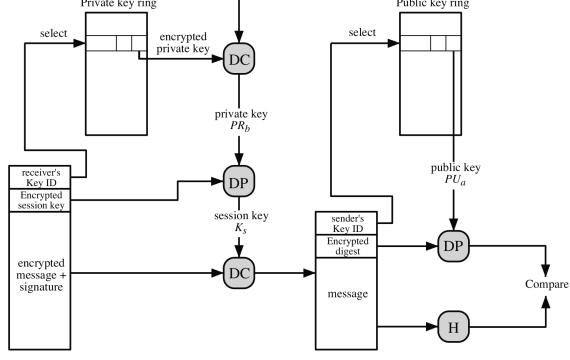
Credit:xaedes & jfreax & Acdx, Wikimedia Commons, CC Attribution-Share Alike 3.0

PGP Operation: Message Generation at A


Secure apps

Aims

HTTPS


Secure Email

Credit: Figure 18.5 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

25

Networking Secure apps PGP Operation: Message Reception at B Aims passphrase Crypto Basics HTTPS Secure Email Private key ring select

Credit: Figure 18.6 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011