Packets

Terminology

Example: IP

Packet Size

Example Packets

Packets

Networking

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 2 September 2013 ${\tt Common/Reports/packets.tex,\ r676}$

Networking

Contents

Packets

Terminology

Example: IP

Packet Size

Terminology

Example Packets

Example: IP Datagram

Packet Size

Further Example Packets

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packets

- Most communication protocols group data into separate pieces
- ► Each piece of data is commonly called a packet
- ► Information in a packet often separated into parts:

Header control information at start of packet; used to support protocol operation

Payload actual data

Trailer control information at end of packet; used to support protocol operation

Not all parts in all packets, e.g. Header + Payload; Header + Payload + Trailer; Header only

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packet Terminology

- ► No standard terminology for packets
- ► Other names: frame, datagram, segment, package, message
- ▶ Differs among protocols and layers, e.g.

Application message

Transport TCP segment, UDP datagram

Network datagram

Data Link frame

- ► Standards often measure packet sizes in octets
 - ► 1 octet = 8 bits (always true)
 - ▶ 1 Byte = 8 bits = 1 octet (true in most practical cases today)

Packets

Packet Header (and Trailer)

Terminology

Example: IP

Packet Size

Example Packets

What is Purpose of Header?

- ► Contains information to support protocol operation
- ► Sender includes information in header so receiver can correctly process the data and optionally respond
- ▶ Information often split into fields; each field has a value
- ► Number, meaning and size of fields defined in standard
 - ▶ RFC 793 defines TCP segment header fields
 - ► IEEE 802.11 defines wireless LAN frame header and trailer fields
- Many protocols have default, fixed size header, with optional extra fields
 - ► TCP: 20 bytes required; optional fields allowed
 - ► IEE 802.11 MAC Data: typically 24 byte header and 4 byte trailer; other sizes possible

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

General Packet Structure

Packet

Header	Payload	Trailer	
Field1 = Va Field2 = Va	lue1 lue2	— Field1 — Field2	- = Value1 = Value2
FieldN = Va	lueN	FieldN	= ValueN

Packets

Packet Header and Trailer

Terminology

Example: IP

Packet Size

Example Packets

Header vs Trailer

- ► Trailer also contains information to support protocol operation
- ► Header before the payload, trailer after the payload
- ▶ Devices can process packet as it is received; header then payload then trailer
 - ► Info in header can be processed before/as data arrives
 - ▶ Router can determine where to send the packet before the entire packet has been received
 - ► Trailer often used when dependent on data, e.g. checksum over data
- Most protocols use header, some use both header and trailer
- ► (For simplicity, examples often only consider header)

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packet Header (and Trailer)

Example Header Fields

- ► Source and destination addresses, e.g. IP address, MAC address
- ► Packet, payload, header lengths
- ► Sequence numbers, e.g. data sequence, ACK number
- ► Protocol version, e.g. IPv4
- ► Checksums, error detection codes
- ► Packet types, e.g. SYN, ACK, RST
- ► Flags
 - ► Single bit values
 - ▶ 1: flag is set/true, e.g. feature is on
 - ▶ 0: flag is unset/false, e.g. feature is off

Contents

Packets

Terminology

Example: IP

zxampic. n

Packet Size

Example Packets

Terminology

Example: IP Datagram

Packet Size

Further Example Packets

Networking

Example IP Datagram: Binary

Packets

Terminology

Example: IP

Lxample. II

Packet Size

Example Packets

Read left to right

160 bits = 20 Bytes

Packets

Example IP Datagram: Binary

Terminology

Example: IP

Packet Size

Example Packets

IETF RFC 791 defines which bits belong to which fields

Version 0100

Header length 0101

Source Address 00001010000010100110010101000001

Destination Address

11001011100000111101000101010010

11

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Example IP Datagram: Meaning

IETF RFC 791 defines meaning of field values

Version $0100 \rightarrow 4$

Header length $0101 \rightarrow 5 \times 4 = 20$ Bytes

Source Address 10.10.101.65

Destination Address 203.131.209.82

Networking Packets Terminology

Example: IP

Packet Size

Example Packets

Example IP Datagram: Re-arranged Binary

32 bits per row 5 rows = 160 bits = 20 Bytes

13

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

IP Datagram Structure

	0	4	8	14	16	19	31
Ī	Version	HLength	DiffServ	ECN		Total Length	
98	Identification			Flags	Fragment Offset		
20 Bytes	Time T	o Live	Protocol			Header Checksum	
Source IP Address					SS		
	Destination IP Address						
	Options + Padding (optional)						
	Data						

Although packets are just sequence of bits, for convenience headers and header fields often drawn row-by-row

Packets

Simplified IP Datagram Structure

Terminology

Example: IP

Packet Size

Example Packets

Another way to draw packets . . .

Destination Address

IP Data

-- Version
-- Header Length
...

15

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Example IP Datagram: Meaning

Version 4

Header length 20 Bytes

Differentiated Services Codepoint Default (000000)

Explicit Congestion Notification Not-ECT (00)

Total Length 474 Bytes

Identification 0x078c

Flags 0x02

▶ 0... = Reserved bit: Not set

▶ .1.. = Don't fragment: Set

▶ ..0. = More fragments: Not set

Fragment offset 0

Time to live 64

Protocol TCP (6)

Header checksum 0x2571

Source 10.10.101.65

Destination 203.131.209.82

Contents

Packets

Terminology

Example: IP

Packet Size

Example Packets

Terminology

Example: IP Datagram

Packet Size

Further Example Packets

17

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packet Size

- ► Standards define the size of headers (and trailers)
- ► Normally a default header size (cannot be smaller) and optional extra fields (depending on the protocol features in use)
- ► Headers and trailers are overhead from users perspective
- ► How big should a packet be?
 - ► Depends on many factors; tradeoff between different performance criteria
 - ► Standards often define a maximum packet/payload size
 - ► E.g. Ethernet frame: 14 Byte header, 4 Byte trailer, maximum payload of 1500 Bytes
- Given fixed header/trailer and maximum payload, what size payload is optimal?
 - ► Large payload: minimize overhead of header/trailer
 - ► Small payload: minimize overhead of retransmissions
 - ► Small payload: make efficient use of buffers
 - ► Small payload: provide fairness when multiple users sharing medium

Packets

Packet Overhead

Terminology

Example: IP

Packet Size

Example Packets

Assume 2000 Bytes of user data to be sent; each packet contains 20 Bytes of header

Payload size = 1000 B 2 packets; 40 Bytes of total overhead

Payload size = **200 B** 10 packets; 200 Bytes of overhead Larger packet/payload \rightarrow less overhead of headers/trailers

19

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packet Retransmit

Assume 1 bit error occurs randomly

Payload size = 1000 B 1020 Bytes retransmitted; 2040 Bytes sent to deliver 1000 B of data

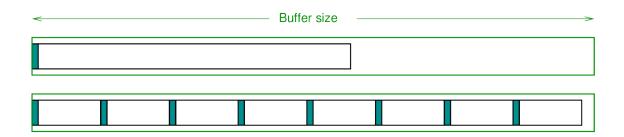
Payload size = 200 B 220 Bytes retransmitted; 1320 Bytes sent to deliver 1000 B of data

Smaller packet/payload \rightarrow less to retransmit if errors

Packets

Terminology

Example: IP


Packet Size

Example Packets

Packet Buffering

Assume receiver has buffer of 1800 Bytes

Payload size = **1000 B** 1 packet can fit in buffer; 780 Bytes of buffer space wasted

Payload size = 200 B 8 packets can fit in buffer; 40 Bytes of buffer space wasted

Smaller packet/payload \rightarrow less waste of buffer space

21

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Packet Fairness

Assume 3 users take in turns transmitting packets; 2 users have large packets, 1 user has only small payload to send

А			
В			
С]	

Aim of a fair system: each user can transmit 33% of time User sending small packet has to wait long time for other users to complete transmissions

Payload size = 1000 B Spend 1020 out of 2260 time units transmitting; 45% of time

Payload size = 200 B Spend 220 out of 2260 time units transmitting; 10% of time; large time waiting for other users

Smaller packet/payload \rightarrow fairer for all users

Contents

Packets

Terminology

Example: IP

Packet Size

Example Packets

Terminology

Example: IP Datagram

Packet Size

Further Example Packets

Networking

Packets

Terminology

Example: IP

Packet Size

Example Packets

Example Maximum Packet Sizes

IEEE 802.3 Ethernet frame 1500 Bytes payload IEEE 802.11 WLAN frame 2312 Bytes payload SDH (STM-1/OC-3) 2430 Bytes (including header) ATM Cell 5 Byte header, 48 Byte payload (fixed) IP datagram 65535 Bytes (including header) UDP datagram 65535 Bytes (including header) TCP segment 65535 Bytes (including header)

- ► Typically source and destination negotiate a Maximum Segment Size (MSS) such that the IP datagram carrying the TCP segment will not have to be split to fit into data link layer packets
- Maximum payload allowed by data link layer called Maximum Transmission Unit (MTU)
- ► TCP over IP over IEEE 802.3: MTU = 1500 Bytes; MSS = 1460 Bytes

HTTP request message no hard limit; browsers may implement limits, e.g. 8 kB

Packets

Other Example Packets: Ethernet Frame

Terminology

Example: IP

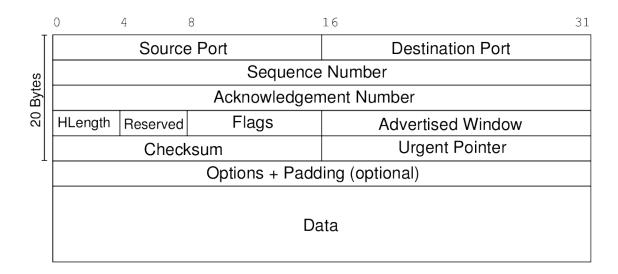
Packet Size

Example Packets

6 Bytes	6 Bytes	2 Bytes	46 to 1500 Bytes	4 Bytes
Destination Address	Source Address	Ether Type	Data	CRC Checksum

Networking

Packets


Terminology

Example: IP

Packet Size

Example Packets

Other Example Packets: TCP Segment

Other Example Packets: UDP Datagram

Packets

Terminology

Example: IP

Packet Size

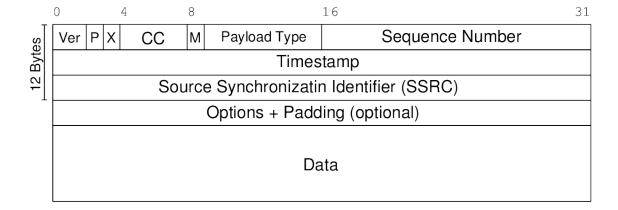
Example Packets

	0	16 31		
Bytes	Source Port	Destination Port		
8 By	Total Length	Checksum		
	Data			

27

Networking

Packets


Terminology

Example: IP

Packet Size

Example Packets

Other Example Packets: RTP Packet

Packets

Other Example Packets: HTTP Message

Terminology

Example: IP

Packet Size

Example Packets

Text formatted message

► Generic HTTP message format:

Start line

Optional header lines

<empty line>

Optional message body

- ► Start line differs for request and response, e.g. request:
 - ► Start line: Method URL Version
 - ► Methods:
 - ► GET: retrieve the resource at the specific URL
 - ► POST: asks server to accept and process the attached data at the resource
 - ▶ ...
 - ▶ Version: version of HTTP, e.g. HTTP/1.0, HTTP/1.1
- ► Header format: field-name: value
 - ► Date: data and time of message generation
 - ► Content-Length: length of message body in bytes
 - ► User-Agent: indicates information about the client
 - ► Host: domain name of host of resource