Hash Functions

Hash Functions

Authentication

Signature

Requirements

MD5 and SHA

Cryptographic Hash Functions

CSS441: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

 $Prepared \ by \ Steven \ Gordon \ on \ 20 \ December \ 2015 \\ css441y15s2l09, \ Steve/Courses/2015/s2/css441/lectures/cryptographic-hash-functions.tex, \ r4295 \\ lectures/cryptographic-hash-functions.tex, \ r4295 \\ lectures/cryptographic-hash$

uthenticatio

gnature

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Securit

Hash Functions

Hash Functions

Authenticatio

Signature

Requireme

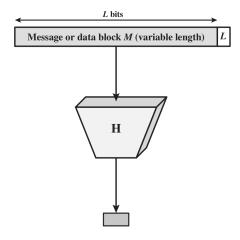
MD5 and SH

Hash Functions

- ► Hash function H: variable-length block of data M input; fixed-size hash value h = H(M) output
- ► Applying H to large set of inputs should produce evenly distributed and random looking outputs
- Cryptographic hash function: computationally infeasible to find:
 - 1. *M* that maps to known *h* (one-way property)
 - 2. M_1 and M_2 that produce same h (collision-free property)
- Used to determine whether or not data has changed
- Examples: message authentication, digital signatures, one-way password file, intrusion/virus detection, PRNG

Hash Functions

Hash Functions


Aughandinatio

Signature

Requirements

MD5 and SF

Cryptographic Hash Function

Hash value h (fixed length)

Credit: Figure 11.1 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Hash Functions

Hash Functions

Authentication

Signature

Requiremen

MD5 and SH

Contents

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Security

Hash Functions

Authentication

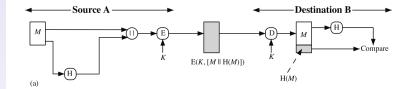
Message Authentication

- Verify the integrity of a message
 - Ensure data received are exactly as sent
 - Assure identity of the sender is valid
- Hash function used to provide message authentication called message digest

Hash Functions

Hash Functions

Authentication


Signature

Requirement

MD5 and SH

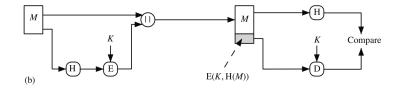
Message Authentication Example (a)

► Encrypt the message and hash code using symmetric encryption

Hash Functions

Hash Functions

Authentication


Signatures

Requirements

MD5 and SH

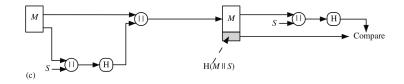
Message Authentication Example (b)

- ► Encrypt only hash code
- Reduces computation overhead when confidentiality not required

Hash Functions

Hash Functions

Authentication


Signature

Requirement

MD5 and SH

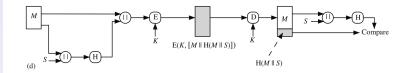
Message Authentication Example (c)

- ► Shared secret *S* is hashed
- ▶ No encryption needed

Hash Functions

Hash Functions

Authentication


Signature

Damiliana

MD5 and SH

Message Authentication Example (d)

Shared secret combined with confidentiality

Hash Functions

.

Authentication

Signature

Requirem

MD5 and SH

Authentication and Encryption

- Sometimes desirable to avoid encryption when performing authentication
 - Encryption in software can be slow
 - Encryption in hardware has financial costs
 - Encryption hardware can be inefficient for small amounts of data
 - Encryption algorithms may be patented, increasing costs to use
- Message Authentication Codes (or keyed hash function)
 - ► Take secret key *K* and message *M* as input; produce hash (or MAC) as output
 - Combining hash function and encryption produces same result as MAC; but MAC algorithms can be more efficient than encryption algorithms
 - MAC covered in next topic

Hash Function

thentication

Signatures

Requirement

MD5 and SI

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Security

Hash Functions

Hash Functions

Signatures

rtequirement

Authentication

Digital Signatures

- ▶ Aim of a signature: prove to anyone that a message originated at (or is approved by) a particular user
- Symmetric key cryptography
 - ► Two users, A and B, share a secret key K
 - ► Receiver of message (user *A*) can verify that message came from the other user (*B*)
 - ▶ User C cannot prove that the message came from B (it may also have came from A)
- ► Public key cryptography can provide signature: only one user has the private key

Signing

▶ User signs a message by encrypting with own private key

$$S = E(PR_A, M)$$

User attaches signature to message

Verification

 User verifies a message by decrypting signature with signer's public key

$$M' = D(PU_A, S)$$

▶ User then compares received message M with decrypted M'; if identical, signature is verified

Digital Signature Operations (Practice)

No need to encrypt entire message; encrypt hash of message Signing

► User signs a message by encrypting hash of message with own private key

$$S = E(PR_A, H(M))$$

▶ User attaches signature to message

Verification

 User verifies a message by decrypting signature with signer's public key

$$h = D(PU_A, S)$$

▶ User then compares hash of received message, H(M), with decrypted h; if identical, signature is verified

Hash Functions

Hash Functions

Authenticati

Signatures

Requirem

MD5 and SF

Digital Signature Algorithms

- RSA
- ▶ Digital Signature Algorithm (DSA): FIPS-186
- ► ECDSA: DSA with elliptic curve cryptography
- ► ElGamal signature scheme: DSA is enhancement of ElGamal
- Bilinear pairing based signatures, e.g. BLS
- ▶ Different hash algorithms can be used; e.g. SHA2
 - Pre-image resistant, second pre-image resistant, collision resistant

Hash Functions

Hash Functions

Authentication

 ${\sf Requirements}$

MD5 and SH

Contents

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Security

Hash Functions

Hash Functions

Authentication

Signature

Requirements

MD5 and SF

Pre-images and Collisions

- For hash value h = H(x), x is pre-image of h
- ▶ H is a many-to-one mapping; h has multiple pre-images
- ▶ Collision occurs if $x \neq y$ and H(x) = H(y)
- Collisions are undesirable
- ► How many pre-images for given hash value?
 - ▶ If H takes *b*-bit input block, 2^b possible messages
 - ▶ For *n*-bit hash code, where b > n, 2^n possible hash codes
 - ▶ On average, if uniformly distributed hash values, then each hash value has 2^{b-n} pre-images

Hash Functions

Requirements

Requirements of Cryptographic Hash Function

Variable input size: H can be applied to input block of any size

Fixed output size: H produces fixed length output

Efficiency: H(x) relatively easy to compute (practical implementations)

Pre-image resistant: For any given h, computationally infeasible to find y such that H(y) = h(one-way property)

Second pre-image resistant: For any given x, computationally infeasible to find $y \neq x$ with H(y) = H(x) (weak collision resistant)

Collision resistant: Computationally infeasible to find any pair (x, y) such that H(x) = H(y)(strong collision resistant)

Pseudo-randomness: Output of H meets standard tests for pseudo-randomness

Hash Functions

Hash Functions

Signatures

Requirements

MD5 and SH

Required Hash Properties for Different Applications

Weak hash function: Satisfies first 5 requirements (but not collision resistant)

Strong hash function: Also collision resistant

	Preimage Resistant	Second Preimage Resistant	Collision Resistant
Hash + digital signature	yes	yes	yes*
Intrusion detection and virus detection		yes	
Hash + symmetric encryption			
One-way password file	yes		
MAC	yes	yes	yes*

^{*} Resistance required if attacker is able to mount a chosen message attack

Credit: Table 11.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Hash Functions

Hash Fun

Authenticati

Signatures

Requirements

IVID5 and SF

Brute Attacks on Hash Functions

Pre-image and Second Pre-image Attack

- ▶ Find a y that gives specific h; try all possible values of y
- ▶ With m-bit hash code, effort required proportional to 2^m

Collision Resistant Brute Attack

- ► Find any two messages that have same hash values
- Effort required is proportional to $2^{m/2}$
- ▶ Due to birthday paradox, easier than pre-image attacks

Practical Effort

- Cryptanalysis attacks possible in theory; complex
- ▶ Collision resistance desirable for general hash algorithms
- ▶ MD5 uses 128-bits: collision attacks possible (2⁶⁰)
- ► SHA uses longer codes; collision attacks infeasible

Contents

lash Function

uthentication

Signature

Requireme

MD5 and SHA

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Security

Hash Functions

Authentication

Jigilatai C3

MD5 and SHA

MD5

- ► Message Digest algorithm 5, developed by Ron Rivest in 1991
- ▶ Standardised by IETF in RFC 1321
- Generates 128-bit hash
- Was commonly used by applications, passwords, file integrity; no longer recommended
- ► Collision and other attacks possible; tools publicly available to attack MD5

Hash Functions

Hash Function

Authenticati

Signatures

Requirement

MD5 and SHA

SHA

- Secure Hash Algorithm, developed by NIST
- ► Standardised by NIST in FIPS 180 in 1993
- ► Improvements over time: SHA-0, SHA-1, SHA-2, SHA-3
- SHA-1 (and SHA-0) are considered insecure; no longer recommended
- ► SHA-3 in development, competition run by NIST

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2128	< 2128
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

Credit: Table 11.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

