Public Key Crypto

Principles

D:00 - 11-11----

Others

Public Key Cryptography

CSS441: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

 $Prepared\ by\ Steven\ Gordon\ on\ 20\ December\ 2015\\ css441y15s2l07,\ Steve/Courses/2015/s2/css441/lectures/public-key-cryptography.tex,\ r4295$

Contents

Principles

fie-Hellm

Public Key Crypto

ne-menni

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Public Key Crypto

Principles

Principle

Diffie-Hellma

Other

Birth of Public-Key Cryptosystems

- ▶ Beginning to 1960's: permutations and substitutions (Caesar, rotor machines, DES, ...)
- ► 1960's: NSA secretly discovered public-key cryptography
- ▶ 1970: first known (secret) report on public-key cryptography by CESG, UK
- ▶ 1976: Diffie and Hellman public introduction to public-key cryptography
 - Avoid reliance on third-parties for key distribution
 - Allow digital signatures

Public Key Crypto

Principles

Diffie-Hellma

Othe

Principles of Public-Key Cryptosystems

- Symmetric algorithms used same secret key for encryption and decryption
- Asymmetric algorithms in public-key cryptography use one key for encryption and different but related key for decryption
- ► Characteristics of asymmetric algorithms:
 - Require: Computationally infeasible to determine decryption key given only algorithm and encryption key
 - ► Optional: Either of two related keys can be used for encryption, with other used for decryption

Public and Private Keys

Principles

Diffie-Hellma

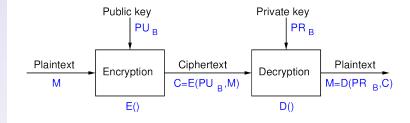
Othe

Public-Private Key Pair

User A has pair of related keys, public and private: (PU_A, PR_A) ; similar for other users

Public Key

- Public, Available to anyone
- For secrecy: used in encryption
- ▶ For authentication: used in decryption

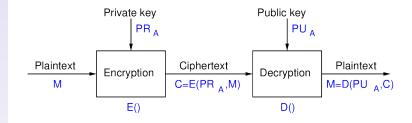

Private Key

- Secret, known only by owner
- ► For secrecy: used in decryption
- ► For authentication: used in decryption

Confidentiality with Public Key Crypto

Principles

- Encrypt using receivers public key
- Decrypt using receivers private key
- Only the person with private key can successful decrypt


Authentication with Public Key Crypto

Principles

Principle

Diffie-Hellma

Other

- Encrypt using senders private key
- Decrypt using senders public key
- Only the person with private key could have encrypted

Conventional vs Public-Key Encryption

Principles

Tillciple

Diffie-Hellma

Otner

Conventional Encryption	Public-Key Encryption	
Needed to Work:	Needed to Work:	
The same algorithm with the same key is used for encryption and decryption.	One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.	
The sender and receiver must share the algorithm and the key.	The sender and receiver must each have one of the matched pair of keys (not the	
Needed for Security:	same one).	
1. The key must be kept secret.	Needed for Security:	
It must be impossible or at least impractical to decipher a message if no	One of the two keys must be kept secret	
other information is available.	2. It must be impossible or at least impractical to decipher a message if no	
Knowledge of the algorithm plus samples of ciphertext must be	other information is available.	
insufficient to determine the key.	Knowledge of the algorithm plus one of the keys plus samples of ciphertext mus be insufficient to determine the other key.	

Credit: Table 9.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Public Key Crypto

Principles

Tillciple

Diffie-Hellma

Other

Applications of Public Key Cryptosystems

- ► Secrecy, encryption/decryption of messages
- ▶ Digital signature, *sign* message with private key
- ► Key exchange, share secret session keys

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Credit: Table 9.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Requirements of Public-Key Cryptography

Principles

- 1. Computationally easy for B to generate pair (PU_b, PR_b)
- 2. Computationally easy for A, knowing PU_b and message M, to generate ciphertext:

$$C=\mathrm{E}(PU_b,M)$$

3. Computationally easy for B to decrypt ciphertext using PR_h :

$$M = D(PR_b, C) = D[PR_b, E(PU_b, M)]$$

- 4. Computationally infeasible for attacker, knowing PU_h and C, to determine PR_h
- 5. Computationally infeasible for attacker, knowing PU_h and C, to determine M
- 6. (Optional) Two keys can be applied in either order:

$$M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$$

Requirements of Public-Key Cryptography

Principles

Diffie-Hellma

Othe

6 requirements lead to need for trap-door one-way function

- Every function value has unique inverse
- Calculation of function is easy
- ► Calculation of inverse is infeasible, unless certain information is known

$$Y = f_k(X)$$
 easy, if k and Y are known $X = f_k^{-1}(Y)$ easy, if k and Y are known $X = f_k^{-1}(Y)$ infeasible, if Y is known but k is not

- ▶ What is easy? What is infeasible?
 - Computational complexity of algorithm gives an indication
 - Easy if can be solved in polynomial time as function of input

Public-Key Cryptanalysis

Principles

Principi

Diffie-Hellma

Othe

Brute Force Attacks

- Use large key to avoid brute force attacks
- ▶ Public key algorithms less efficient with larger keys
- ► Public-key cryptography mainly used for key management and signatures

Compute Private Key from Public Key

▶ No known feasible methods using standard computing

Probable-Message Attack

- ► Encrypt all possible M' using PU_b —for the C' that matches C, attacker knows M
- Only feasible of M is short
- ► Solution for short messages: append random bits to make it longer

Contents

Principle

RSA

fie-Hellm

thers

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchang

Other Public-Key Cryptosystems

Public Key Crypto

Principle

RSA

Diffie-Hellma

Others

RSA

- ▶ Ron Rivest, Adi Shamir and Len Adleman
- ► Created in 1978; RSA Security sells related products
- Most widely used public-key algorithm
- ▶ Block cipher: plaintext and ciphertext are integers

The RSA Algorithm

Princip

RSA

Diffie-Hellma

Other

Key Generation

- 1. Choose primes p and q, and calculate n = pq
- 2. Select *e*: $gcd(\phi(n), e) = 1, 1 < e < \phi(n)$
- 3. Find $d \equiv e^{-1} \pmod{\phi(n)}$

$$PU = \{e, n\}, PR = \{d, n\}, p \text{ and } q \text{ also private}$$

Encryption

Encryption of plaintext M, where M < n:

$$C = M^e \mod n$$

Decryption

Decryption of ciphertext *C*:

$$M = C^d \mod n$$

Requirements of the RSA Algorithm

- 1. Possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n
- 2. Easy to calculate $M^e \mod n$ and $C^d \mod n$ for all values of M < n
- 3. Infeasible to determine d given e and n
- ▶ Requirement 1 met if e and d are relatively prime
- Choose primes p and q, and calculate:

$$n=pq$$
 $1< e<\phi(n)$ $ed\equiv 1\pmod{\phi(n)}$ or $d\equiv e^{-1}\pmod{\phi(n)}$

n and e are public; p, q and d are private

Public Key Crypto

Example of RSA Algorithm

RSA

Diffie-Hellma

Others

 $C = M^e \mod n$

Decryption:

Encryption:

$$M = C^d \mod n$$

- ▶ Modulus, *n* of length *b* bits
- Public exponent, e
- Private exponent, d
- Prime1, p, and Prime2, q
- ightharpoonup Exponent1, $d_p = d \pmod{p-1}$
- ▶ Exponent2, $d_q = d \pmod{q-1}$
- ► Coefficient, $q_{inv} = q^{-1} \pmod{p}$
- ▶ Private values: $\{n, e, d, p, q, d_p, d_q, q_{inv}\}$
- ▶ Public values: {*n*, *e*}

Computational Efficiency of RSA

- Encryption and decryption require exponentiation
 - Very large numbers; using properties of modular arithmetic makes it easier:

$$[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$$

- Choosing e
 - ▶ Values such as 3, 17 and 65537 are popular: make exponentiation faster
 - ▶ Small e vulnerable to attack: add random padding to each M
- Choosing d
 - Small d vulnerable to attack
 - Decryption using large d made faster using Chinese Remainder Theorem and Fermat's Theorem
- Choosing p and q
 - p and q must be very large primes
 - ► Choose random odd number and test if its prime (probabilistic test)

Public Key Crypto

FIIIC

RSA

Diffie-Hellma

Other

Security of RSA

- ▶ Brute-Force attack: choose large *d* (but makes algorithm slower)
- ► Mathematical attacks:
 - 1. Factor *n* into its two prime factors
 - 2. Determine $\phi(n)$ directly, without determining p or q
 - 3. Determine d directly, without determining $\phi(n)$
 - ► Factoring *n* is considered fastest approach; hence used as measure of RSA security
- ▶ Timing attacks: practical, but countermeasures easy to add (e.g. random delay). 2 to 10% performance penalty
- Chosen ciphertext attack: countermeasure is to use padding (Optimal Asymmetric Encryption Padding)

Public Key Crypto

RSA

Diffic Hellman

Other:

Progress in Factorisation

- Factoring is considered the easiest attack
- \triangleright Some records by length of n:
 - ▶ 1991: 330 bits (100 digits)
 - 2003: 576 bits (174 digits)
 - ▶ 2005: 640 bits (193 digits)
 - ▶ 2009: 768 bit (232 digits), 10²⁰ operations, 2000 years on single core 2.2 GHz computer
- ▶ Typical length of *n*: 1024 bits, 2048 bits, 4096 bits

Contents

Principle

Diffie-Hellman

Public Key Crypto

Others

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Public Key Crypto

Principle

Diffie-Hellman

Other

Diffie-Hellman Key Exchange

- ▶ Diffie and Hellman proposed public key crypto-system in 1976
- Algorithm for exchanging secret key (not for secrecy of data)
- Based on discrete logarithms
- Easy to calculate exponential modulo a prime
- ▶ Infeasible to calculate inverse, i.e. discrete logarithm

Diffie-Hellman Key Exchange Algorithm

Diffie-Hellman

prime number

 $\alpha < q$ and α a primitive root of qα

User A Key Generation

Select private XA $X_A < q$

 $Y_A = \alpha^{X_A} \mod a$ Calculate public Y₄

User B Key Generation

Select private X_R $X_R < q$

 $Y_B = \alpha^{X_B} \mod a$ Calculate public Y_R

Calculation of Secret Kev by User A

 $K = (Y_p)^{X_A} \mod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{X_B} \mod a$

Diffie-Hellman

Diffie-Hellman Key Exchange

User A User B Generate random $X_A < q$; Calculate $Y_A = \alpha^{X_A} \mod q$ Y_A Generate random $X_B < q$; Calculate $Y_B = \alpha^{X_B} \bmod q$; Y_B Calculate $K = (Y_A)^{X_B} \mod q$ Calculate $K = (Y_R)^{X_A} \mod q$

Credit: Figure 10.2.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Public Key Crypto

Diffie-Hellman Key Exchange Example

Principle

Diffie-Hellman

Others

Public Key Crypto

Principle

Diffie-Hellman

Others

Security of Diffie-Hellman Key Exchange

- ► Insecure against man-in-the-middle-attack
- Countermeasure is to use digital signatures and public-key certificates

Contents

Principle

Others

ie-Hellma

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems

Princip

.

Diffie-Hellma

Others

ElGamal Crypto-system

- ► Similar concepts to Diffie-Hellman
- Used in Digital Signature Standard and secure email

Elliptic Curve Cryptography

- Uses elliptic curve arithmetic (instead of modular arithmetic in RSA)
- Equivalent security to RSA with smaller keys (better performance)
- Used for key exchange and digital signatures