CSS441 – Public Key Cryptography **Notes**

RSA Key Generton:
\n
$$
p = 13, q = 23
$$

\n $n = pq$ $\phi(n) = \phi(pq)$
\n $= 13 \times 23$ $= \phi(p)\phi(q)$
\n $= 299$ $= \phi(13) \times \phi(23)$
\n $= 12 \times 22$
\n $= 264$
\n $e = 5$ $gcd(264, s) = 1$
\n $exd mod \phi(n) = 1$
\n 5×53 $mod 264 = 1$
\n $d = 53$
\n $pU_{\text{A}} = (e = 5, n = 299)$ $PR_{\text{A}} = (d = 53, n = 299)$
\n $p = 13$ $q = 23$ $\phi(n) = 264$

Figure 1: RSA Key Generation Example 1; Lecture 12

Use B:

\n
$$
p = |7, q=11 \qquad p = |7x|1
$$
\n
$$
\varphi(|87) = \varphi(|7 \times 11) = 187
$$
\n
$$
= 16 \times 10
$$
\n
$$
= 160
$$
\ngcd (e, 160) = 1

\n
$$
= 160
$$
\n
$$
e = 3
$$
\n
$$
= x 3 \mod 160 = 1
$$
\n
$$
d = 107
$$
\n
$$
= 161 \div 3 \times 321 = 3 = 107
$$
\n
$$
e = 7, d = 23
$$
\n
$$
PU_{\beta} = (e = 7, n = 187) \qquad PR_{\beta} = (d = 23, n = 187)
$$

Figure 2: RSA Key Generation Example 2; Lecture 12

User B User A $PO_{A}= (e=5, n=299)$ $PU_{B^2}(e=7, n=187)$ $PR_{B} = (d=23, p=187)$ $PR_{A} = (d = 53, n = 299)$ $PUA = (e = 5, n = 299)$ $P0_{B}$ = (e=7 n=[87) $M = 8$ $C = M^e$ mod n = 8^{7} mod 187 = 134 $C = 134$
 $T = 134^2$ med 187

Attacker

Attacker

= 8 Known by attacher: $C = 134$
 $P0_B = (e = 7, n = 187)$ Find M, d ?? O Try M? C = Me med n $134 = M^7 \text{ mod } 187$ Practice: not possible if n is large (D) Inverse M ? 7= $dlog_{m,187}(134)$ Practive: dlog() not possible $\circled{3}$ $M = \circled{c}^d$ mod n exd mod $\emptyset(n) = 1$ $7xd \mod \emptyset$ (187) = 1 Manual: $\phi(n)$ is not possible Factor n into p, g: not possible

Figure 3: RSA Encryption for Confidentiality; Lecture 12

RSA
$$
C = M^e \mod n
$$

\n $M = C^d \mod n$
\nProbeda *Message* Aflade:
\nTrry all possible M :
\n $C_1 = M_1^e \mod n$ $C_1 \neq C$
\n $C_2 = M_2^e \mod n$ $C_2 \neq C$
\n $C_x = M_x^e \mod n$ $C_x = C$

Figure 4: RSA Probable Message Attack; Lecture 13

RSA Enc. C = M^e mod n
\nRSA Dec. M = C^d mod n
\nM=5, e=17, d=4, n=21
\nC=5¹⁷ mod 21
\n= 17
\nM' =
$$
\begin{pmatrix} -14 & -14 & 14 \\ 17 & 14 & 14 \\ 19 & 19 & 14 \\ 10 & 19 & 14 \end{pmatrix}
$$

\nM' = C^d mod n
\n= (m^e mod n)^d mod n
\n= (m^e)^d mod n
\nMhen does M' = M ?
\nQ = $\alpha^{\varphi(n)+1}$ mod n (Euler's)
\nWhen $\begin{pmatrix} \alpha d & \varphi(n) = (\varphi(n)+1) & \text{mod } \varphi(n) \\ \alpha d & \text{mod } \varphi(n) = 1 \\ \text{end } \varphi(n) = 1 \end{pmatrix}$
\n= M I (d) = e (mod $\varphi(n)$)
\n= $\rho \varphi(n)$ are relatively prime
\n $n = \rho xq$ $\varphi(n) = (\rho+1)x(q-1)$

Figure 5: Proof of RSA Encryption Success; Lecture 13

A
\n
$$
q= 353
$$
 $q=353$
\n $\alpha = 3$ $\alpha = 3$
\n $\chi_a = 97$
\n $\gamma_a = x^{\text{va}}$ med q
\n $= 3^{\text{u}} \text{mod } 35$
\n $= 40$
\n $\frac{\text{Va} = 10, \text{Az} = 3, \text{az} = 353}{\text{Z}} \times \gamma_{B} = 233$
\n $\gamma_{B} = \alpha^{\text{xa}}$ med q
\n $= 3^{233} \text{mod } 353$
\n $\gamma_{B} = \gamma_{B} = 248$
\n $\gamma_{B} = \gamma_{B} = 248$

Figure 6: Diffie-Hellman Key Exchange Example 1; Lecture 14

Figure 7: Diffie-Hellman Key Exchange Example 2; Lecture 14

A
$$
Public: q = 19, \alpha = 3
$$
 B
\n $X_A = 10$
\n $Y_A = 3^{10} \text{ mod } 19 = 16$
\n $Y_{n\alpha}1B = 2$
\n $Y_{n\alpha}1B = 2$
\n $Y_{n\alpha}1B = 4$
\n $X_{n\alpha}1B = 9$
\n $X_{n\alpha}1B = 9$
\n $X_{n\alpha}1B = 10$
\n $X_{n\alpha}1B = 10$
\n $X_{n\alpha}1B = 10$
\n $X_{n\alpha}1B = 10$
\n $Y_{n\alpha}1B = 7$
\n $X_{n\alpha}1B = 10^2 \text{ mod } 19$
\n $X_{n\alpha}1B = 17$
\n $X_{n\alpha}1B = 2$
\n $X_{n\alpha}1B = 10^2 \text{ mod } 19$
\n $X_{n\alpha}1B = 17$
\n $X_{n\alpha}1B = 17$
\n $X_{n\alpha}1B = 17$
\n $Y_{n\alpha}1B = 17$
\n $$

Figure 8: Man-in-the-middle attack on Diffie-Hellman; Lecture 15