CSS441 – Public Key Cryptography Notes

RSA key Generation:

$$p = 13$$
, $q = 23$
 $n = pq$ $\emptyset(n) = \emptyset(pq)$
 $= 13 \times 23$ $= \emptyset(p)\emptyset(q)$
 $= \emptyset(13) \times \emptyset(23)$
 $= 12 \times 22$
 $= 264$
 $e = 5$ $\gcd(264, 5) = 1$
 $e = 6$ $\gcd(264, 5) = 1$
 $e = 7$ $\gcd(264, 5) = 1$
 $e = 8$ $\gcd(264, 5) = 1$
 $e = 8$ $\gcd(264, 5) = 1$
 $e = 9$ $\gcd(264, 5) = 1$
 $e = 9$ $\gcd(264, 5) = 1$
 $e = 10$ $\gcd(264, 5)$
 $e = 10$ $\gcd(264, 5)$

Figure 1: RSA Key Generation Example 1; Lecture 12

User B:
$$p = |7|, q = |1|$$
 $p = |7|, q = |1|$
 $p = |7|, q = |1|$
 $p = |87|$
 $p = |87|$

Figure 2: RSA Key Generation Example 2; Lecture 12

Figure 3: RSA Encryption for Confidentiality; Lecture 12

RSA
$$C = M^e \mod n$$

 $M = C^d \mod n$
Probable Message Attack:
Try all possible M:
 $C_1 = M_1^e \mod n$ $C_1 \neq C$
 $C_2 = M_2^e \mod n$ $C_2 \neq C$
 $C_3 = M_4^e \mod n$ $C_4 = C$

Figure 4: RSA Probable Message Attack; Lecture 13

RSA Enc.
$$C = M^e \mod n$$

RSA Dec. $M = C^a \mod n$
 $M = 5$, $e = 17$, $d = 4$, $n = 21$
 $C = 5^{17} \mod 21$
 $= 17$
 $M' = 17^4 \mod 21$
 $= 4$ $M' \neq M$
 $M' = C^a \mod n$
 $= (M^e \mod n)^d \mod n$
 $= (M^e)^d \mod n$
 $M' = M^{ed} \mod n$
When does $M' = M$?
 $\alpha = \alpha^{(m)+1} \mod n$ (Evler's)
When $ed = \alpha^{(m)+1} \mod n$ (Evler's)
When $ed = \alpha^{(m)+1} \mod n$ (Evler's)
 $\alpha = \alpha^{(m)+1} \mod n$ (Evler's)

Figure 5: Proof of RSA Encryption Success; Lecture 13

A B
$$q = 353$$
 $q = 353$ $q = 353$ $q = 353$ $q = 353$ $q = 37$ q

Figure 6: Diffie-Hellman Key Exchange Example 1; Lecture 14

A
$$g = 19$$
 $\alpha = 10$
 $X_{A} = 7$
 $Y_{A} = 10^{7} \mod 19$
 $= 15$
 $y_{B} = 10^{8} \mod 19$
 $= 17^{7} \mod 19$

Figure 7: Diffie-Hellman Key Exchange Example 2; Lecture 14

A Public:
$$q = |4, x = 3$$
 $X_A = 10$
 $Y_A = 3^{10} \mod |9| = |6$
 $Y_{A} = |6|$
 $Y_{A} = |6|$

Figure 8: Man-in-the-middle attack on Diffie-Hellman; Lecture 15