Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Message Authentication Codes

CSS441: Security and Cryptography

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 20 December 2015 css441y15s2l08, Steve/Courses/2015/s2/css441/lectures/message-authentication-codes.tex, r4295

CSS441

Contents

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Message Authentication Requirements and Functions

Authentication using Symmetric Key Encryption

Authentication with Message Authentication Codes

Security of MACs

MAC Algorithms

Introduction

Functions

- Auth. with Encryption
- Auth. with MAC

Security

Algorithms

Attacks on Communications across Network

- 1. Disclosure: encryption
- 2. Traffic analysis: encryption
- 3. Masquerade: message authentication
- 4. Content modification: message authentication
- 5. Sequence modification: message authentication
- 6. Timing modification: message authentication
- 7. Source repudiation: digital signatures
- 8. Destination repudiation: digital signatures

CSS441

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Authentication

- ► Receiver wants to verify:
 - **1.** Contents of the message have not been modified (*data authentication*)
 - **2.** Source of message is who they claim to be (*source authentication*)
- Different approaches available:
 - Symmetric Key Encryption
 - Message Authentication Codes (MACs)
 - Hash Functions
 - Public Key Encryption (i.e. Digital Signatures)

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Contents

Message Authentication Requirements and Functions

Authentication using Symmetric Key Encryption

Authentication with Message Authentication Codes

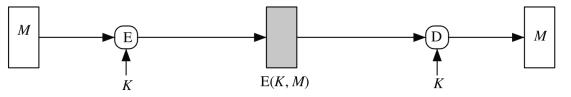
Security of MACs

MAC Algorithms

CSS441

Introduction

Functions


Auth. with Encryption

Auth. with MAC

Security

Algorithms

Symmetric Encryption for Authentication

Credit: Figure 12.1(a) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

- Confidentiality: only B (and A) can recover plaintext
- Source Authentication: A is only other user with key; must have come from A
- Data Authentication: successfully decrypted; data has not been modified
- Assumption: decryptor can recognise correct plaintext

6

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Recognising Correct Plaintext

Example 1

B receives ciphertext (supposedly from A, using shared secret key K):

DPNFCTEJLYONCJAEZRCLASJTDQFY

B decrypts with key K to obtain plaintext:

SECURITYANDCRYPTOGRAPHYISFUN

- Was the plaintext encrypted with key K (and hence sent by A)?
- Is the ciphertext received the same as the ciphertext sent by A?

CSS441

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Recognising Correct Plaintext

Example 2

B receives ciphertext (supposedly from A, using shared secret key K):

QEFPFPQEBTOLKDJBPPXDBPLOOVX

B decrypts with key K to obtain plaintext:

FTUEUEFTQIDAZSYQEEMSQEADDKM

- Was the plaintext encrypted with key K (and hence sent by A)?
- Is the ciphertext received the same as the ciphertext sent by A?

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Recognising Correct Plaintext

Example 3

B receives ciphertext (supposedly from A, using shared secret key K):

0110100110101101010110111000010

B decrypts with key K to obtain plaintext:

0101110100001101001010100101110

- Was the plaintext encrypted with key K (and hence sent by A)?
- Is the ciphertext received the same as the ciphertext sent by A?

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Recognising Correct Plaintext

Example 1

- ► Assume the message is English
- Plaintext had expected structure; assume the plaintext is correct
 - Sent by A and has not been modified

Example 2

- ► Assume the message is English
- Plaintext had no structure in expected language; assume plaintext is incorrect
 - Either not sent by A or modified

Example 3

- Binary data, e.g. image, compressed file
- Cannot know whether correct or incorrect

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Recognising Correct Plaintext

- Valid plaintexts should be small subset of all possible messages
 - E.g. 26ⁿ possible messages of length n; only small subset are valid English phrases
- Plaintext messages have structure
- BUT automatically detecting structure can be difficult
- Add structure to make it easier, e.g.
 - ► Error detecting code or Frame Check Sequence
 - Packet header

11

CSS441

Contents

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Message Authentication Requirements and Functions

Authentication using Symmetric Key Encryption

Authentication with Message Authentication Codes

Security of MACs

MAC Algorithms

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Authentication with Message Authentication Codes

 Append small, fixed-size block of data to message: cryptographic checksum or MAC

 $\mathbf{T} = \mathrm{MAC}(K, M)$

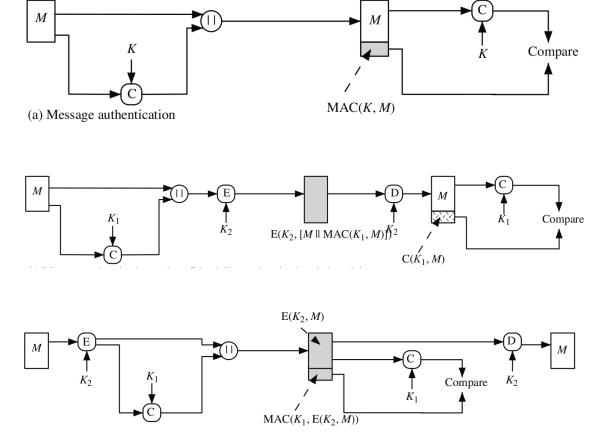
M = input message *MAC* = MAC function

- K = shared secret key of k bits
- T = message authentication code (or tag) of *n* bits
- ► MAC function also called keyed hash function
- MAC function similar to encryption, but does not need to be reversible
 - Easier to design stronger MAC functions than encryption functions

CSS441

Example Uses of MAC

Introduction


Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Credit: Figure 12.4 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Contents

Message Authentication Requirements and Functions

Authentication using Symmetric Key Encryption

Authentication with Message Authentication Codes

Security of MACs

MAC Algorithms

CSS441

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Requirement of MACs

Objective of Attacker

- Assume MAC function is known, key K is not
- ► For valid MAC code for given message x

Requirement of MAC Function

Computation Resistance : given one or more text-MAC pairs $[x_i, MAC(K, x_i)]$, computationally infeasible to compute any text-MAC pair [x, MAC(K, x)] for new input $x \neq x_i$

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Security of MACs

Brute Force Attack on Key

- Attacker knows $[x_1, T_1]$ where $T_1 = MAC(K, x_1)$
- Key size of k bits: brute force on key, 2^k
- But ... many tags match T_1
- ▶ For keys that produce tag T_1 , try again with $[x_2, T_2]$
- Effort to find K is approximately 2^k

Brute Force Attack on MAC value

- For x_m , find T_m without knowing K
- Similar effort required as one-way/weak collision resistant property for hash functions
- For *n* bit MAC value length, effort is 2^n

Effort to break MAC: $\min(2^k, 2^n)$

CSS441

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Security of MACs

Cryptanalysis

- Many different MAC algorithms; attacks specific to algorithms
- MAC algorithms generally considered secure

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

Contents

Message Authentication Requirements and Functions

Authentication using Symmetric Key Encryption

Authentication with Message Authentication Codes

Security of MACs

MAC Algorithms

CSS441

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

MACs Based on Block Ciphers

- Data Authentication Algorithm (DAA): based on DES; considered insecure
- Cipher-Based Message Authentication Code (CMAC): mode of operation used with Triple-DES and AES
- ► OMAC, PMAC, UMAC, VMAC, ...

Introduction

Functions

Auth. with Encryption

Auth. with MAC

Security

Algorithms

HMAC

- MAC function derived from cryptographic hash functions
 - MD5/SHA are fast in software (compared to block ciphers)
 - Libraries for hash functions widely available

 $\mathrm{HMAC}(K,M) = \mathrm{H}((K \oplus \mathrm{opad}) || \mathrm{H}((K \oplus i pad) || M))$

where ipad = 00110110 repeated, opad = 01011100 repeated

 Security of HMAC depends on security of hash function used