Primes
Modular
Arithmetic

Number Theory

CSS441: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 20 December 2015
css441y15s2I06, Steve/Courses/2015/s2/css441/lectures/number-theory.tex, r4295

Contents

Number Theory

Primes
Modular
Arithmetic

Divisibility and Prime Numbers

Modular Arithmetic

Divisibility

- b divides a if $a=m b$ for some m, where a, b and m are integers
- $b \mid a$
- b is a divisor of a
- $\operatorname{gcd}(a, b)$: greatest common divisor of a and b
- Euclidean algorithm can find gcd
- Two integers, a and b, are relatively prime if $\operatorname{gcd}(a, b)=1$

CSS441

Number Theory

Primes
Modular
Arithmetic

Prime Numbers

- An integer $p>1$ is a prime number if and only if its only divisors are ± 1 and $\pm p$
- Any integer $a>1$ can be factored as:

$$
a=p_{2}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{t}^{a_{t}}
$$

where $p_{1}<p_{2}<\ldots<p_{t}$ are prime numbers and where each a_{i} is a positive integer

Primes
Modular
Arithmetic

CSS441

Number Theory

Primes
Modular Arithmetic
csan
-

Modular Arithmetic

- If a is an integer and n is a positive integer, we define $a \bmod n$ to be the remainder when a is divided by n
- n is called the modulus
- Two integers a and b are congruent modulo n if $(a \bmod n)=(b \bmod n)$, which is written as

$$
a \equiv b \quad(\bmod n)
$$

- $(\bmod n)$ operator maps all integers into the set of integers $Z_{n}=\{0,1, \ldots,(n-1)\}$
- Modular arithmetic performs arithmetic operations within confines of set Z_{n}

Properties of Modular Arithmetic

- Rules of ordinary arithmetic involving addition, subtraction, and multiplication also apply in modular arithmetic

$$
\begin{aligned}
& {[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n} \\
& {[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n} \\
& {[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n}
\end{aligned}
$$

Property	Expression
Commutative Laws	$(w+x) \bmod n=(x+w) \bmod n$ $(w \times x) \bmod n=(x \times w) \bmod n$
Associative Laws	$[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$ $[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n$
Distributive Law	$[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n$
Identities	$(0+w) \bmod n=w \bmod n$ $(1 \times w) \bmod n=w \bmod n$
Additive Inverse $(-w)$	For each $w \in \mathrm{Z}_{n}$, there exists a z such that $w+z \equiv 0 \bmod n$

Division in Modular Arithmetic

- a is additive inverse of b if $a+b \equiv 0(\bmod n)$
- All integers have an additive inverse
- a is multiplicative inverse of b if $a \times b \equiv 1(\bmod n)$
- Not all integers have a multiplicative inverse
- a has a multiplicative inverse in $(\bmod n)$ if a is relatively prime to n
- Division: $a \div b \equiv a \times$ MultInverse $(b)(\bmod n)$

CSS441

Number Theory

Primes
Modular
Arithmetic

Fermat's Theorem

- Fermat's Theorem (1): if p is prime and a is a positive integer not divisible by p, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

- Fermat's Theorem (2): if p is prime and a is a positive integer, then

$$
a^{p} \equiv a \quad(\bmod p)
$$

Number Theory

Primes
Modular
Arithmetic

Euler's Theorem

- Euler's Totient Function, $\phi(n)$: the number of positive integers less than n and relatively prime to n
- $\phi(1)=1$
- For prime $p, \phi(p)=p-1$
- For primes p and q, and $n=p q$,

$$
\phi(n)=(p-1) \times(q-1)
$$

- Euler's Theorem (1): For every a and n that are relatively prime:

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

- Euler's Theorem (2): For positive integers a and n :

$$
a^{\phi(n)+1} \equiv a \quad(\bmod n)
$$

CSS441

Number Theory

Primes
Modular
Arithmetic

Logarithms in Modular Arithmetic

- Exponentiation $(\bmod n)$: repeated multiplication
- Logarithms in ordinary arithmetic:

$$
\begin{gathered}
b=a^{i} \\
i=\log _{a}(b)
\end{gathered}
$$

- Logarithms in modular arithmetic (discrete logarithm):

$$
\begin{gathered}
b=a^{i} \quad(\bmod p) \\
i=\operatorname{dlog}_{a, p}(b)
\end{gathered}
$$

- A unique exponent i can be found if a is a primitive root of prime p
- If a is a primitive root of p then $a, a^{2}, a^{3}, \ldots, a^{p-1}$ are distinct $(\bmod p)$
- Only integers with primitive roots: $2,4, p^{\alpha}, 2 p^{\alpha}$ where p is any odd prime and alpha is positive integer

CSS441
Number Theory

Primes
Modular
Arithmetic

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}	a^{8}	a^{9}	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Credit: Table 8.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

CSS441

Discrete Logarithms, Modulo 19

Number Theory

Primes
Modular
Arithmetic
Powers of Integers, Modulo 19
(a) Discrete logarithms to the base 2, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(b) Discrete logarithms to the base 3, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	9

(c) Discrete logarithms to the base 10, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{10,19}(a)$	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	9

(d) Discrete logarithms to the base 13, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{13,19}(a)$	18	11	17	4	14	10	12	15	16	7	6	3	1	5	13	8	2	9

(e) Discrete logarithms to the base 14, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{14,19}(a)$	18	13	7	8	10	2	6	3	14	5	12	15	11	1	17	16	4	9

(f) Discrete logarithms to the base 15, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log _{15,19}(a)$	18	5	11	10	8	16	12	15	4	13	6	3	7	17	1	2	14	9

Complexity

Certain problems are computationally hard...

Integer Factorisation

- If p and q are unknown primes, given $n=p q$, find p and q
- Largest RSA number factored into two primes is 768 bits (232 decimal digits)

Euler's Totient

- Given composite n, find $\phi(n)$
- Harder than integer factorisation

Discrete Logarithms

- Given b, a and p, find i such that $i=\operatorname{dlog}_{a, p}(b)$
- Comparable to integer factorisation

