Introduction

Concepts

Architecture

Attacks

Services

Mechanisms

Introduction to Security

CSS441: Security and Cryptography

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 20 December 2015 css441y15s2l01, Steve/Courses/2015/s2/css441/lectures/introduction-to-security.tex, r4295

CSS441

Contents

Introduction

Concepts	
Architecture	Computer Security Concepts
Attacks	
Services	
Mechanisms	The OSI Security Architecture

Security Attacks

Security Services

Security Mechanisms

Introduction

Concepts
Architecture
Attacks
Services
Mechanisms

What Is Security?

Computer Security

The protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability, and confidentiality of information system resources.

NIST Computer Security Handbook

Network and Internet Security

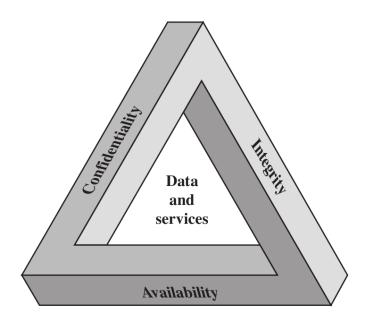
Measures to deter, prevent, detect, and correct security violations that involve transmission of information.

Stallings, Cryptography and Network Security

CSS441

Introduction

Key Security Concepts


Concepts

Architecture

Attacks

Services

Mechanisms

Others: Authenticity, Accountability

Credit: Figure 1.1 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Introduction

Concepts

Architecture

Attacks

Services

Mechanisms

Impact of Security Breaches

How do security breaches impact organisations?

- Effectiveness of primary operations are reduced
- ► Financial loss
- Damage to assets
- ► Harm to individuals

Different levels of impact. E.g. FIPS Publication 199 defines: Low/Minor, Moderate/Significant, High/Severe

CSS441

Contents

Introduction

Computer Security Concepts

Attacks

Concepts

Architecture

Services Mechanisms

The OSI Security Architecture

Security Attacks

Security Services

Security Mechanisms

Introduction

Concepts

Architecture

Attacks

Services

Mechanisms

ITU-T X.800 Security Architecture for OSI

- Systematic approach to define requirements for security and approaches to satisfying those requirements
- ITU-T Recommendation X.800, Security Architecture for OSI
- Provides abstract view of main issues of security
- Security aspects: Attacks, mechanisms and services
- ► Terminology:
 - ► Threat: potential violation of security
 - Attack: assault on system security derived from intelligent threat

Introduction

Concepts

Attacks

Services

Architecture

Mechanisms

Aspects of Security

Security Attack

Any action that attempts to compromise the security of information or facilities

 Threat: potential for violation of security of information or facilities

Security Mechanism

A method for preventing, detecting or recovering from an attack

Security Service

Uses security mechanisms to enhance the security of information or facilities in order to stop attacks

Contents

Introduction

Concepts Architecture Attacks Services Mechanisms

Computer Security Concepts

The OSI Security Architecture

Security Attacks

Security Services

Security Mechanisms

CSS441

Introduction

Concepts

Attacks

Services

Architecture

Mechanisms

Types of Attacks

Passive Attack

- Make use of information, but not affect system resources, e.g.
 - 1. Release message contents
 - 2. Traffic analysis
- Relatively hard to detect, but easier to prevent

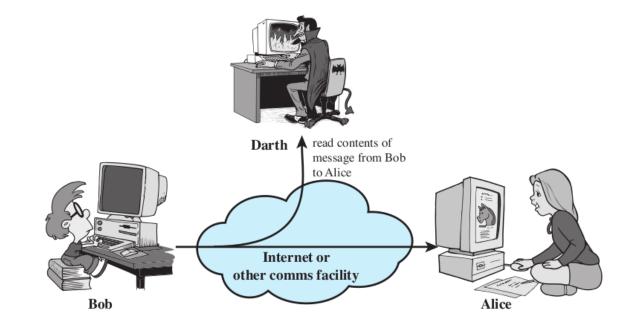
Active Attack

- Alter system resources or operation, e.g.
 - 1. Masquerade
 - **2.** Replay
 - **3.** Modification
 - 4. Denial of service
- Relatively hard to prevent, but easier to detect

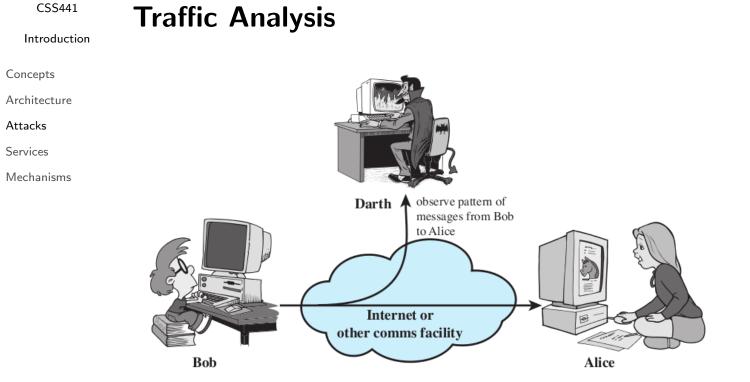
9

Release Message Contents

Introduction


Concepts

Architecture


Attacks

Services

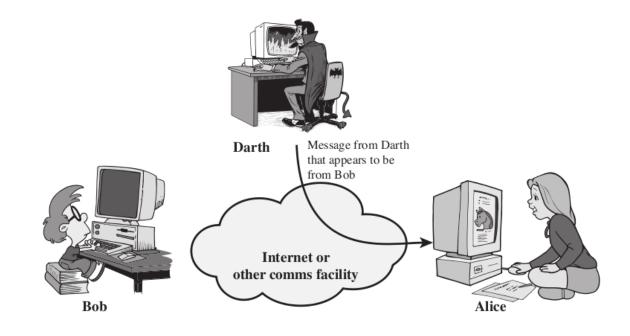
Mechanisms

Credit: Figure 1.2(a) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Credit: Figure 1.2(b) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Masquerade Attack

Introduction


Concepts

Architecture

Attacks

Services

Mechanisms

Credit: Figure 1.3(a) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

CSS441

Introduction

Concepts

Architecture

Attacks

Services

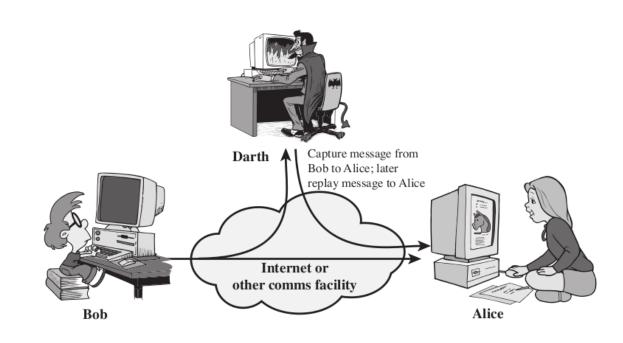
Mechanisms

"On the Internet, nobody knows you're a dog"

"On the Internet, nobody knows you're a dog."

Replay Attack

Introduction



Architecture

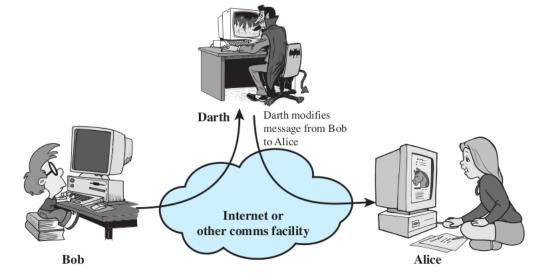
Attacks

Services

Mechanisms

Credit: Figure 1.3(b) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

CSS441 **Modification Attack** Introduction


Concepts

Architecture

Attacks

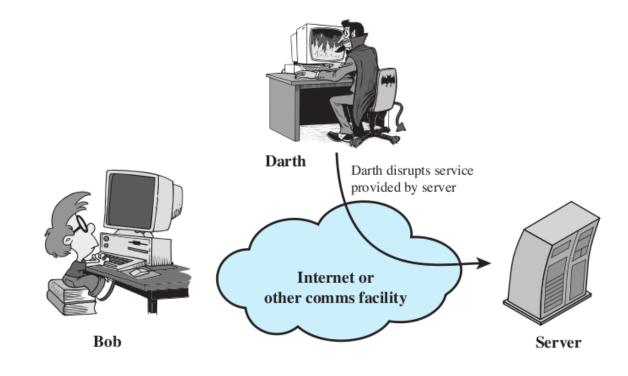
Services

Mechanisms

Credit: Figure 1.3(c) in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Denial of Service Attack

Introduction



Architecture

Attacks

Services

Mechanisms

 $Credit: \ Figure \ 1.3(d) \ in \ Stallings, \ Cryptography \ and \ Network \ Security, \ 5th \ Ed., \ Pearson \ 2011$

17

CSS441ContentsIntroductionConceptsArchitectureComputer Security ConceptsAttacksServicesMechanismsThe OSI Security Architecture

Security Attacks

Security Services

Security Mechanisms

Introduction

Concepts

Architecture

Attacks

Services

Mechanisms

Defining a Security Service

- ITU-T X.800: service that is provided by a protocol layer of communicating systems and that ensures adequate security of the systems or of data transfers
- IETF RFC 2828: a processing or communication service that is provided by a system to give a specific kind of protection to system resources
- Security services implement security policies and are implemented by security mechanisms

CSS441

Introduction

Concepts

Architecture

Attacks

Services

Mechanisms

Security Services

- **1.** Authentication Assure that the communicating entity is the one that it claims to be. (Peer entity and data origin authentication)
- 2. Access Control Prevent unauthorised use of a resource
- **3.** Data Confidentiality Protect data from unauthorised disclosure
- **4.** Data Integrity Assure data received are exactly as sent by authorised entity
- **5.** Non-repudiation Protect against denial of one entity involved in communications of having participated in communications
- **6.** Availability System is accessible and usable on demand by authorised users according to intended goal

Introduction

Contents

Concepts Architecture Attacks Services Mechanisms The OSI Security Architecture

Security Attacks

Security Services

Security Mechanisms

CSS441

Introduction

Security Mechanisms

- Techniques designed to prevent, detect or recover from attacks
- No single mechanism can provide all services
- Common in most mechanisms: cryptographic techniques
- Specific security mechanisms from ITU-T X.800: Encipherment, digital signature, access control, data integrity, authentication exchange, traffic padding, routing control, notarisation
- Pervasive security mechanisms from ITU-T X.800: Trusted functionality, security label, event detection, security audit trail, security recovery

Concepts

Architecture

Attacks

Services

Mechanisms

Introduction

Concepts Architecture

Attacks Services

Mechanisms

Security Services and Mechanisms

	Mechanism								
Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation	
Peer entity authentication	Y	Y			Y				
Data origin authentication	Y	Y							
Access control			Y						
Confidentiality	Y						Y		
Traffic flow confidentiality	Y					Y	Y		
Data integrity	Y	Y		Y					
Nonrepudiation		Y		Y				Y	
Availability				Y	Y				

Credit: Table 1.4 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011