RSA Key Generation:

$$p = 17$$
 $q = 11$
 $n = p \times q$
 $= 187 \leftarrow public$
 $Ø(n) = Ø(p) \times Ø(q)$
 $= (p-1) \times (q-1)$
 $= 16 \times 10$
 $= 160$
 $e : gcd(e, Ø(n)) = 1, 1 < e < Ø(n)$
 $X = 3 \times X \times 7 \times 9 \times 11 ...$
 $e = 7 \leftarrow public$
 $d : e \times d \mod Ø(n) = 1$
 $7 \times - \mod 160 = 1$
 $7 \times - 481$
 $7 \times - 481$
 $1 = 23$
 $PU_A = (e = 7, n = 187) PR_A^{-}(d = 23, n = 187)$

Figure 1: RSA Key Generation 1; Lecture 12

Key generation:

$$p = 13$$
, $q = 23$
 $n = 13 \times 23$
 $= 299$
 $p(299) = 12 \times 22$
 $= 264$
 $e: gcd(e, 264) = 1$
 $e = 5$
 $d = 53$
 $d = 151$
Why? $5 \times 53 \mod 264 = 1$
 $PU_B = (e = 5, n = 299)$ $PR_B = (d = 53, n = 299)$

Figure 2: RSA Key Generation 2; Lecture 12

A

$$PU_{A} = (e = 7, n = 187)$$
 $PU_{B} = (e = 5, n = 299)$
 $PR_{A} = (d = 23, n = 187)$ $PR_{B} = (d = 53, n = 299)$
 $PU_{B} = (e = 5, n = 299)$ $PU_{A} = (e = 7, n = 187)$
 $Confidential message A \rightarrow B$ $M = 15$
 $C = E(PU_{B}, M)$
 $= M^{e} macl n$
 $= 15^{5} mad 299$
 $= 214 \xrightarrow{C = 214} M' = D(PR_{B}, C)$
 $= C^{d} mad n$
 $= 214^{53} mad 299$
 $= 15$

Attacker:
$$C=214$$
, $PU_{B}=(e=5, n=299)$
 $C=M^{e} \mod n$
 $214=M^{s} \mod 299$
 $O Try all M: make M large
Make n large
 $O \log_{m,299}(214)=5$
 $M=C^{d} \mod n$
 $M=214^{d} \mod 299$
Find $d: Cxd \mod \beta(n)=1$
 $5xd \mod \beta(299)=1$
Find $\beta(n): - factor into p.9$
 $- \operatorname{manually solve} \beta(n)$$

Figure 4: RSA Attach Methods; Lecture 12

Enc.
$$C = M^{e} \mod n$$

Dec. $M' = C^{d} \mod n$
When does $M = M'$?
 $M = 5 e = 17 d = 4 n = 20$
Enc. $C = 5^{tr} \mod 20$
 $= 5$
Dec. $M' = 5^{4} \mod 20$
 $= 5$
 $M = 5 e = 17 d = 4 n = 21$
 $C = 17$
 $M' = 4 \times$
 $M' = C^{d} \mod n$
 $= (M^{e} \mod n)^{d} \mod n$
 $= (M^{e})^{d} \mod n$
 $M' = M^{ed} \mod n$
 $M = M^{$

Figure 5: Proof that RSA Encrypt Works; Lecture $12\,$

A

$$q = 353$$

 $\alpha = 3$
 $X_{A} = 97$
 $Y_{A} = \alpha^{X_{A}} \mod q$
 $= 3^{97} \mod 353$
 $= 40$
 $\frac{q = 353, \alpha = 3, Y_{A} = 40}{X_{B}}$
 $\frac{q = 353, \alpha = 3, Y_{A} = 40}{X_{B}}$
 $\frac{q = 353, \alpha = 3, Y_{A} = 40}{X_{B}}$
 $Y_{B} = \alpha^{X_{B}} \mod q$
 $= 3^{73} \mod 353$
 $= 248$
 $K_{A} = Y_{B}^{X_{A}} \mod q$
 $= 248^{97} \mod 353$
 $= 160$
 $K_{A} = Y_{B}^{X_{A}} \mod q$
 $K_{A} = 248^{X_{A}} \mod q$
 $K_{A} = 248^{X_{A}} \mod q$
 $Y_{A} = \alpha^{X_{A}} \mod q$
 $248 = 3^{X_{A}} \mod q$
 $X_{A} = \alpha d_{Q}$
 $X_{A} = \alpha d_{Q}$

Figure 6: Diffie-Hellman Example 1; Lecture 15

A

$$q = 19$$

 $x = 10$
 $X_{A} = 7$
 $Y_{A} = 10^{7} \mod 19$
 $= 15$
 $q = A_{px} = 10, Y_{A} = 15$
 $X_{B} = 8$
 $Y_{B} = 17$
 $X_{B} = 8$
 $Y_{B} = 17$
 $X_{B} = 8$
 $Y_{B} = 17$
 $K_{A} = 17^{7} \mod 19$
 $= 5$
 $Shared Secret = 5$
Attacker Knows : $q = 19$, $x = 10$, $Y_{A} = 15$
 $Y_{B} = 17$

Figure 7: Diffie-Hellman Example 2; Lecture 15

$$Y_{A} = \alpha^{X_{A}} \mod q$$

$$Y_{B} = \alpha^{X_{B}} \mod q$$

$$K_{A} = Y_{B}^{X_{A}} \mod q$$

$$K_{B} = Y_{A}^{X_{B}} \mod q$$

$$K_{B} = Y_{A}^{X_{B}} \mod q$$

$$K_{B} = (\alpha^{X_{B}} \mod q)^{X_{A}} \mod q$$

$$K_{B} = (\alpha^{X_{A}} \mod q)^{X_{B}} \mod q$$

$$K_{B} = (\alpha^{X_{A}})^{X_{B}} \mod q$$

Figure 8: Proof of Diffie-Hellman Key Exchange; Lecture 15

A

$$Q = 19$$
 $X_{A} = 10$
 $\alpha = 3$ $Y_{A} = 3^{10} \mod 19 = 16$
 $x = 3$ $Y_{A} = 3^{10} \mod 19 = 16$
 $x = 3$ $Y_{A} = 3^{10} \mod 19 = 16$
 $x_{mals} = 2$ $X_{B} = 11$
 $Y_{mols} = 9$ $Y_{B} = 10$
 $Y_{B} = 2$ $Ma1 \leftarrow Y_{B} = 10$ $K_{B} = 9^{11} \mod 19$
 $Ka = 2^{10} \mod 19$ $X_{molA} = 7$ $K_{B} = 10^{2} \mod 19$
 $= 17$ $Y_{molA} = 2$ $= 5$
 $KA = 16^{7} \mod 19$
 $x_{A} = 17$ $C = E(5, m)$
 $M = D(5, C)$

Figure 9: Diffie-Hellman Man-in-the-Middle Attack; Lecture 15