CSS322 – Public Key Cryptography Notes

Figure 1: RSA Key Generation; Lecture 10

Figure 2: RSA Encryption and Decryption; Lecture 10

$$C = M^{e} \mod n \qquad M = C^{d} \mod n$$

$$M' = C^{d} \mod n \qquad mod \qquad mod \qquad n$$

$$= (M^{ed} \mod n) \mod n \qquad mod \qquad n$$

$$M' = M^{ed} \mod n \qquad n$$

$$Q = Q^{ed} \mod n$$

$$Q = Q^{ed} \mod n \qquad n$$

$$Q = Q^{ed} \mod n$$

$$Q = Q^{ed} \mod n \qquad n$$

$$Q$$

Figure 3: Why RSA Successfully Decrypts; Lecture 11

A
$$C = | 1 \rangle$$
 B

Attacker

Know: $C = | 1 \rangle$, $PU_B = (e = 7, n = | 87)$
 $M = C \mod D$
 $C = | 1 \rangle$
 $C = | 1$

Figure 4: RSA Attack: Find totient; Lecture 11

Knows:
$$C = 11$$
, $e = 7$, $n = 187$
 $(M_1 = 17, C_1 = 85)$
Find of ??
 $M = C^{(d)} \mod n$
 $C = C^{(d)} \mod n$

Figure 5: RSA Attack: Find Discrete Log; Lecture 11

PU =
$$(e = 7, n = 299)$$

PR = $(d = 1, n = 299)$
ed = $(mod \emptyset(n))$
7d mod $\emptyset(299) = 1$
 $n = pq$
 $\emptyset(n) = \emptyset(pq)$
 $= \emptyset(p)\emptyset(q)$
 $= (p-1)(q-1)$
 $\emptyset(299) = 12 \times 22$
 $= 264$
 $7x - mod 264 = 1$
 $7x - 265 \times 7x = (264x2) + 1 \times 7x$
 $7x = (264x4) + 1 \times 7x$

Figure 6: Example of Breaking RSA Key Pair; Lecture 12