Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Cryptographic Hash Functions

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 28 October 2013 css322y13s2l09, Steve/Courses/2013/s2/css322/lectures/hash.tex, r2963

CSS322

Contents

Hash Functions

Hash Functions

Authentication

Hash Functions

Signatures

Requirements

MD5 and SHA

Authentication with Hash Functions

Digital Signatures

Requirements and Security

MD5 and SHA

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

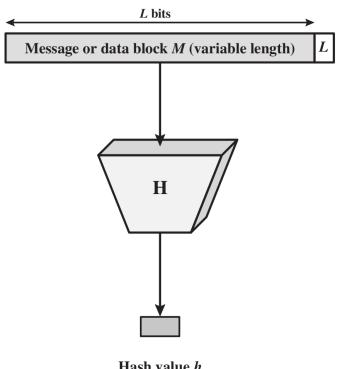
Hash Functions

- ▶ Hash function H: variable-length block of data M input; fixed-size hash value h = H(M) output
- ► Applying H to large set of inputs should produce evenly distributed and random looking outputs
- Cryptographic hash function: computationally infeasible to find:
 - **1.** *M* that maps to known *h* (one-way property)
 - **2.** M_1 and M_2 that produce same h (collision-free property)
- ▶ Used to determine whether or not data has changed
- ► Examples: message authentication, digital signatures, one-way password file, intrusion/virus detection, PRNG

CSS322

Hash Functions

Hash Functions


Authentication

Signatures

Requirements

MD5 and SHA

Cryptographic Hash Function

Hash value *h* (fixed length)

Credit: Figure 11.1 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

3

Contents

Hash Functions

Hash Functions

Authentication

Hash Functions

Signatures

Requirements

MD5 and SHA

Authentication with Hash Functions

Digital Signatures

Requirements and Security

MD5 and SHA

5

CSS322

Hash Functions

Hash Functions

Authentication

Signatures
Requirements

MD5 and SHA

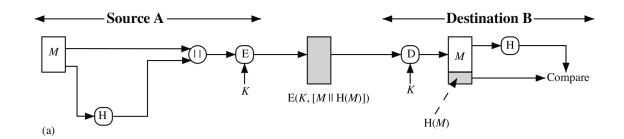
Message Authentication

- ► Verify the integrity of a message
 - ► Ensure data received are exactly as sent
 - ► Assure identity of the sender is valid
- ► Hash function used to provide message authentication called message digest

Hash Functions

Hash Functions

Authentication


Signatures

Requirements

MD5 and SHA

Message Authentication Example (a)

► Encrypt the message and hash code using symmetric encryption

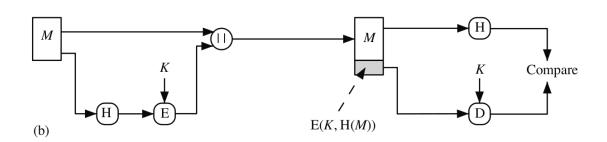
7

CSS322

Hash Functions

Hash Functions

Authentication


Signatures

Requirements

MD5 and SHA

Message Authentication Example (b)

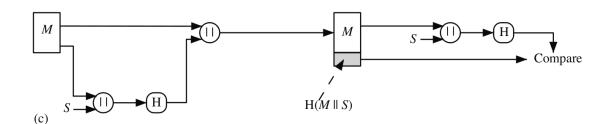
- ► Encrypt only hash code
- Reduces computation overhead when confidentiality not required

Hash Functions

Message Authentication Example (c)

Hash Functions

Authentication


Signatures

Requirements

MD5 and SHA

► No encryption needed

► Shared secret *S* is hashed

9

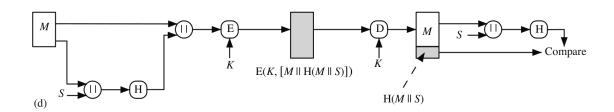
CSS322

Hash Functions

Hash Functions

Authentication

Signatures


Б. .

Requirements

MD5 and SHA

Message Authentication Example (d)

► Shared secret combined with confidentiality

Hash Functions

Authentication and Encryption

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

performing authentication

► Encryption in software can be slow

► Encryption in hardware has financial costs

► Sometimes desirable to avoid encryption when

- ► Encryption hardware can be inefficient for small amounts of data
- Encryption algorithms may be patented, increasing costs to use
- ► Message Authentication Codes (or keyed hash function)
 - ► Take secret key *K* and message *M* as input; produce hash (or MAC) as output
 - ► Combining hash function and encryption produces same result as MAC; but MAC algorithms can be more efficient than encryption algorithms
 - ► MAC covered in next topic

11

CSS322

Contents

Hash Functions

Hash Functions

Authentication

Hash Functions

Signatures

Requirements

MD5 and SHA

Authentication with Hash Functions

Digital Signatures

Requirements and Security

MD5 and SHA

Hash Functions

Hash Functions Authentication

Signatures

Requirements

MD5 and SHA

Digital Signatures

- ► Aim of a signature: prove to anyone that a message originated at (or is approved by) a particular user
- ► Symmetric key cryptography
 - ► Two users, A and B, share a secret key K
 - ▶ Receiver of message (user A) can verify that message came from the other user (B)
 - ▶ User *C* cannot prove that the message came from *B* (it may also have came from A)
- ▶ Public key cryptography can provide signature: only one user has the private key

CSS322

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Digital Signature Operations (Concept)

Signing

► User signs a message by encrypting with own private key

$$S = E(PR_A, M)$$

► User attaches signature to message

Verification

▶ User verifies a message by decrypting signature with signer's public key

$$M' = D(PU_A, S)$$

▶ User then compares received message M with decrypted M'; if identical, signature is verified

Hash Functions

Digital Signature Operations (Practice)

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

No need to encrypt entire message; encrypt hash of message **Signing**

► User signs a message by encrypting hash of message with own private key

$$S = E(PR_A, H(M))$$

► User attaches signature to message

Verification

► User verifies a message by decrypting signature with signer's public key

$$h = D(PU_A, S)$$

▶ User then compares hash of received message, H(M), with decrypted h; if identical, signature is verified

15

CSS322

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Digital Signature Algorithms

- ► RSA
- ▶ Digital Signature Algorithm (DSA): FIPS-186
- ► ECDSA: DSA with elliptic curve cryptography
- ► ElGamal signature scheme: DSA is enhancement of ElGamal
- ▶ Bilinear pairing based signatures, e.g. BLS
- ▶ Different hash algorithms can be used; e.g. SHA2
 - ► Pre-image resistant, second pre-image resistant, collision resistant

Contents

Hash Functions

Hash Functions

Authentication

Hash Functions

Signatures

Requirements

MD5 and SHA

Authentication with Hash Functions

Digital Signatures

Requirements and Security

MD5 and SHA

17

CSS322

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Pre-images and Collisions

- ▶ For hash value h = H(x), x is pre-image of h
- ► H is a many-to-one mapping; h has multiple pre-images
- ▶ Collision occurs if $x \neq y$ and H(x) = H(y)
- ▶ Collisions are undesirable
- ► How many pre-images for given hash value?
 - ▶ If H takes *b*-bit input block, 2^b possible messages
 - ► For *n*-bit hash code, where b > n, 2^n possible hash codes
 - ▶ On average, if uniformly distributed hash values, then each hash value has 2^{b-n} pre-images

Hash Functions

Requirements of Cryptographic Hash Function

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Variable input size: H can be applied to input block of any size

Fixed output size: H produces fixed length output

Efficiency: H(x) relatively easy to compute (practical

implementations)

Pre-image resistant: For any given h, computationally infeasible to find y such that H(y) = h

(one-way property)

Second pre-image resistant: For any given x, computationally infeasible to find $y \neq x$ with

H(y) = H(x) (weak collision resistant)

Collision resistant: Computationally infeasible to find any

pair (x, y) such that H(x) = H(y)

(strong collision resistant)

Pseudo-randomness: Output of H meets standard tests for

pseudo-randomness

CSS322

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Required Hash Properties for Different Applications

Weak hash function: Satisfies first 5 requirements (but

not collision resistant)

Strong hash function: Also collision resistant

	Preimage Resistant	Second Preimage Resistant	Collision Resistant
Hash + digital signature	yes	yes	yes*
Intrusion detection and virus detection		yes	
Hash + symmetric encryption			
One-way password file	yes		
MAC	yes	yes	yes*

^{*} Resistance required if attacker is able to mount a chosen message attack

Credit: Table 11.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

19

Hash Functions

Brute Attacks on Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

Pre-image and Second Pre-image Attack

- \blacktriangleright Find a y that gives specific h; try all possible values of y
- ▶ With *m*-bit hash code, effort required proportional to 2^m

Collision Resistant Brute Attack

- ► Find any two messages that have same hash values
- ▶ Effort required is proportional to $2^{m/2}$
- ▶ Due to birthday paradox, easier than pre-image attacks

Practical Effort

- ► Cryptanalysis attacks possible in theory; complex
- ► Collision resistance desirable for general hash algorithms
- ► MD5 uses 128-bits: collision attacks possible (2⁶⁰)
- ► SHA uses longer codes; collision attacks infeasible

21

CSS322

Contents

Hash Functions

Hash Functions

Authentication

Authentication

Signatures
Requirements

MD5 and SHA

Hash Functions

Authentication with Hash Functions

Digital Signatures

Requirements and Security

MD5 and SHA

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

MD5

- ► Message Digest algorithm 5, developed by Ron Rivest in 1991
- ► Standardised by IETF in RFC 1321
- ► Generates 128-bit hash
- ► Was commonly used by applications, passwords, file integrity; no longer recommended
- ► Collision and other attacks possible; tools publicly available to attack MD5

23

CSS322

Hash Functions

Hash Functions

Authentication

Signatures

Requirements

MD5 and SHA

SHA

- Secure Hash Algorithm, developed by NIST
- ► Standardised by NIST in FIPS 180 in 1993
- ► Improvements over time: SHA-0, SHA-1, SHA-2, SHA-3
- ► SHA-1 (and SHA-0) are considered insecure; no longer recommended
- ► SHA-3 in development, competition run by NIST

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2128	< 2128
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

Credit: Table 11.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011