Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Public Key Cryptography

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 28 October 2013 css322y13s2l07, Steve/Courses/2013/s2/css322/lectures/rsa.tex, r2963

CSS322

Contents

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Public Key Crypto

Ρ	ri	n	ci	р	les
				E.	

RSA

Diffie-Hellman

Others

Birth of Public-Key Cryptosystems

- Beginning to 1960's: permutations and substitutions (Caesar, rotor machines, DES, ...)
- 1960's: NSA secretly discovered public-key cryptography
- 1970: first known (secret) report on public-key cryptography by CESG, UK
- 1976: Diffie and Hellman public introduction to public-key cryptography
 - Avoid reliance on third-parties for key distribution
 - Allow digital signatures

CSS322

Public Key Crypto

RSA

Diffie-Hellman

Others

Principles of Public-Key Cryptosystems

- Symmetric algorithms used same secret key for encryption and decryption
- Asymmetric algorithms in public-key cryptography use one key for encryption and different but related key for decryption
- Characteristics of asymmetric algorithms:
 - Require: Computationally infeasible to determine decryption key given only algorithm and encryption key
 - Optional: Either of two related keys can be used for encryption, with other used for decryption

Principles

RSA

Diffie-Hellman

Others

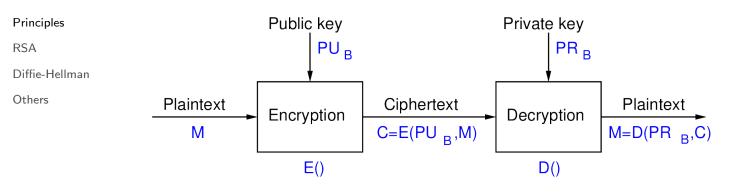
Public and Private Keys

Public-Private Key Pair

User A has pair of related keys, public and private:
 (PU_A, PR_A); similar for other users

Public Key

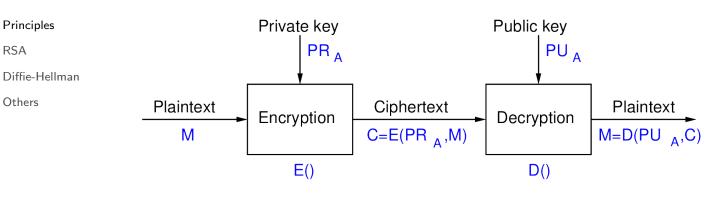
- Public, Available to anyone
- ► For secrecy: used in encryption
- For authentication: used in decryption


Private Key

- Secret, known only by owner
- ► For secrecy: used in decryption
- For authentication: used in decryption

CSS322

Confidentiality with Public Key Crypto


Public Key Crypto

- Encrypt using receivers public key
- Decrypt using receivers private key
- Only the person with private key can successful decrypt

Authentication with Public Key Crypto

Public Key Crypto

- Encrypt using senders private key
- Decrypt using senders public key
- Only the person with private key could have encrypted

CSS322

Conventional vs Public-Key Encryption

Public Key Crypto

Principles	Conventional Encryption	Public-Key Encryption		
RSA	Needed to Work:	Needed to Work:		
Diffie-Hellman	1. The same algorithm with the same key is	1. One algorithm is used for encryption and		
Others	used for encryption and decryption.	decryption with a pair of keys, one for encryption and one for decryption.		
	2. The sender and receiver must share the algorithm and the key.	2. The sender and receiver must each have		
	Needed for Security:	one of the matched pair of keys (not the same one).		
	1. The key must be kept secret.	Needed for Security:		
	2. It must be impossible or at least impractical to decipher a message if no	1. One of the two keys must be kept secret.		
	other information is available.	2. It must be impossible or at least impractical to decipher a message if no		
	3. Knowledge of the algorithm plus samples of ciphertext must be	other information is available.		
	insufficient to determine the key.	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key. 		

Credit: Table 9.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Principles

RSA

Diffie-Hellman

Others

Applications of Public Key Cryptosystems

- Secrecy, encryption/decryption of messages
- Digital signature, sign message with private key
- Key exchange, share secret session keys

Algorithm Encryption/Decryption		Digital Signature	Key Exchange	
RSA	Yes	Yes	Yes	
Elliptic Curve	Yes	Yes	Yes	
Diffie-Hellman	No	No	Yes	
DSS	No	Yes	No	

Credit: Table 9.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

9

CSS322

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Requirements of Public-Key Cryptography

- **1.** Computationally easy for B to generate pair (PU_b, PR_b)
- 2. Computationally easy for A, knowing PU_b and message M, to generate ciphertext:

$$C = \mathrm{E}(PU_b, M)$$

3. Computationally easy for B to decrypt ciphertext using PR_b :

$$M = D(PR_b, C) = D[PR_b, E(PU_b, M)]$$

- **4.** Computationally infeasible for attacker, knowing PU_b and C, to determine PR_b
- **5.** Computationally infeasible for attacker, knowing PU_b and C, to determine M
- 6. (Optional) Two keys can be applied in either order:

$$M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$$

Principles

RSA

- Diffie-Hellman
- Others

Requirements of Public-Key Cryptography

6 requirements lead to need for trap-door one-way function

- Every function value has unique inverse
- Calculation of function is easy
- Calculation of inverse is infeasible, unless certain information is known

$$Y = f_k(X)$$
 easy, if k and Y are known
 $X = f_k^{-1}(Y)$ easy, if k and Y are known
 $X = f_k^{-1}(Y)$ infeasible, if Y is known but k is not

- What is easy? What is infeasible?
 - Computational complexity of algorithm gives an indication
 - Easy if can be solved in polynomial time as function of input

12

CSS322

Public-Key Cryptanalysis

Brute Force Attacks

- Use large key to avoid brute force attacks
- Public key algorithms less efficient with larger keys
- Public-key cryptography mainly used for key management and signatures

Compute Private Key from Public Key

No known feasible methods using standard computing

Probable-Message Attack

- Encrypt all possible M' using PU_b—for the C' that matches C, attacker knows M
- Only feasible of M is short
- Solution for short messages: append random bits to make it longer

Public Key Crypto

Principles

RSA

Diffie-Hellman

Contents

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

CSS322

RSA

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

- Ron Rivest, Adi Shamir and Len Adleman
- Created in 1978; RSA Security sells related products
- Most widely used public-key algorithm
- Block cipher: plaintext and ciphertext are integers

Principles

RSA

Diffie-Hellman

Others

The RSA Algorithm

Key Generation

1.	Choose	primes	р	and	q,	and	calculate	n =	pq
----	--------	--------	---	-----	----	-----	-----------	-----	----

- **2.** Select $e: gcd(\phi(n), e) = 1, 1 < e < \phi(n)$
- **3.** Find $d \equiv e^{-1} \pmod{\phi(n)}$

$$PU = \{e, n\}, PR = \{d, n\}, p \text{ and } q \text{ also private}$$

Encryption

Encryption of plaintext M, where M < n:

 $C = M^e \mod n$

Decryption

Decryption of ciphertext C:

$$M = C^d \mod n$$

Requirements of the RSA Algorithm

- 1. Possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n
- **2.** Easy to calculate $M^e \mod n$ and $C^d \mod n$ for all values of M < n
- **3.** Infeasible to determine d given e and n
- ▶ Requirement 1 met if *e* and *d* are relatively prime
- Choose primes *p* and *q*, and calculate:

 $egin{aligned} n &= pq \ 1 < e < \phi(n) \ ed &\equiv 1 \pmod{\phi(n)} ext{ or } d \equiv e^{-1} \pmod{\phi(n)} \end{aligned}$

• n and e are public; p, q and d are private

Public Key Crypto

CSS322

Principles

RSA

Diffie-Hellman

Example of RSA Algorithm

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

RSA Implementation Example

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

- Encryption:

 $C = M^e \mod n$

Decryption:

$$M = C^d \mod n$$

- Modulus, n of length b bits
- Public exponent, e
- Private exponent, d
- ► Prime1, *p*, and Prime2, *q*
- Exponent1, $d_p = d \pmod{p-1}$
- ▶ Exponent2, $d_q = d \pmod{q-1}$
- Coefficient, $q_{inv} = q^{-1} \pmod{p}$
- Private values: $\{n, e, d, p, q, d_p, d_q, q_{inv}\}$
- ► Public values: {*n*, *e*}

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Computational Efficiency of RSA

Encryption and decryption require exponentiation

 Very large numbers; using properties of modular arithmetic makes it easier:

 $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

- Choosing e
 - Values such as 3, 17 and 65537 are popular: make exponentiation faster
 - Small e vulnerable to attack: add random padding to each M
- ► Choosing *d*
 - ► Small *d* vulnerable to attack
 - Decryption using large *d* made faster using Chinese Remainder Theorem and Fermat's Theorem
- ► Choosing *p* and *q*
 - ► *p* and *q* must be very large primes
 - Choose random odd number and test if its prime (probabilistic test)

CSS322

Security of RSA

- Brute-Force attack: choose large d (but makes algorithm slower)
- ► Mathematical attacks:
 - 1. Factor *n* into its two prime factors
 - **2.** Determine $\phi(n)$ directly, without determining p or q
 - **3.** Determine *d* directly, without determining $\phi(n)$
 - Factoring *n* is considered fastest approach; hence used as measure of RSA security
- ► Timing attacks: practical, but countermeasures easy to add (e.g. random delay). 2 to 10% performance penalty
- Chosen ciphertext attack: countermeasure is to use padding (Optimal Asymmetric Encryption Padding)

Public Key Crypto

Principles

RSA

Diffie-Hellman

Principles

RSA

Diffie-Hellman

Others

Progress in Factorisation

- Factoring is considered the easiest attack
- ► Some records by length of *n*:
 - ▶ 1991: 330 bits (100 digits)
 - ▶ 2003: 576 bits (174 digits)
 - ▶ 2005: 640 bits (193 digits)
 - 2009: 768 bit (232 digits), 10²⁰ operations, 2000 years on single core 2.2 GHz computer
- ► Typical length of *n*: 1024 bits, 2048 bits, 4096 bits

CSS322

Contents

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

ontents

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

22

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Diffie-Hellman Key Exchange

- Diffie and Hellman proposed public key crypto-system in 1976
- Algorithm for exchanging secret key (not for secrecy of data)
- Based on discrete logarithms
- Easy to calculate exponential modulo a prime
- ► Infeasible to calculate inverse, i.e. discrete logarithm

Diffie-Hellman Key Exchange Algorithm

Public Key Crypto

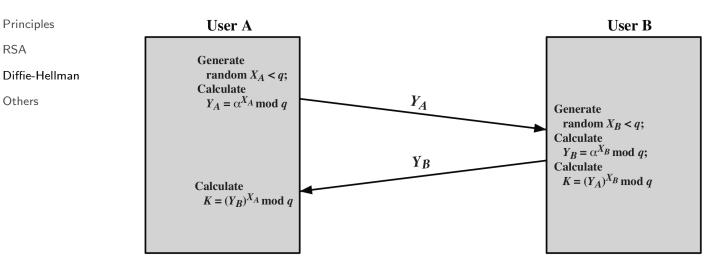
CSS322

Principles

RSA

Diffie-Hellman

Global Public Elements						
	Global Public Elements					
q	prime number					
α	$\alpha < q$ and α a primitive root of q					
	User A Key Generation					
Select private X_A	$X_A < q$					
Calculate public Y_A	$Y_A = \alpha^{X_A} \mod q$					
	User B Key Generation					
Select private X_B	$X_B < q$					
Calculate public Y_B	$Y_B = \alpha^{X_B} \mod q$					
Calcu	lation of Secret Key by User A					
$K = (Y_B)^{X_A} \mod q$						
Calculation of Secret Key by User B						
$K = (Y_A)^{X_B} \mod q$						


Diffie-Hellman Key Exchange

Public Key Crypto

Principles

RSA

Others

Credit: Figure 10.2.2 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

CSS322 Diffie-Hellman Key Exchange Example

Public Key Crypto

Principles

RSA

Diffie-Hellman

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

Security of Diffie-Hellman Key Exchange

- Insecure against man-in-the-middle-attack
- Countermeasure is to use digital signatures and public-key certificates

CSS322

Contents

Public Key Crypto

Principles

RSA

Diffie-Hellman

Others

The RSA Algorithm

Diffie-Hellman Key Exchange

Principles of Public-Key Cryptosystems

Other Public-Key Cryptosystems

Ρ	riı	ıc	ip	les	5

RSA

Diffie-Hellman

Others

Other Public-Key Cryptosystems

ElGamal Crypto-system

- Similar concepts to Diffie-Hellman
- Used in Digital Signature Standard and secure email

Elliptic Curve Cryptography

- Uses elliptic curve arithmetic (instead of modular arithmetic in RSA)
- Equivalent security to RSA with smaller keys (better performance)
- Used for key exchange and digital signatures