Transport Security

Web Security TLS/SSL HTTPS SSH

Transport Level Security

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 31 October 2012 CSS322Y12S2L12, Steve/Courses/2012/s2/css322/lectures/transport.tex, r2531

Transport Security

Web Security TLS/SSL HTTPS SSH

Contents

Web Security Issues

TLS/SSL

HTTPS

Secure Shell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transport Security

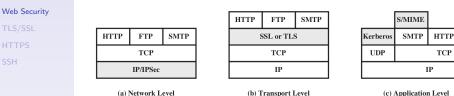
Web Security TLS/SSL HTTPS

Web Security Issues

- Original Internet protocols do not have built-in security (IP, TCP, HTTP, ...)
- Many threats arise for web and other Internet applications
- Issues at: client, server and traffic between client and server

► Cover: SSL/TLS, SSH, IPsec

Transport Security


Web Security TLS/SSL HTTPS

Comparison of Threats on the Web

	Threats	Consequences	Countermeasures
Integrity	 Modification of user data Trojan horse browser Modification of memory Modification of message traffic in transit 	 Loss of information Compromise of machine Vulnerabilty to all other threats 	Cryptographic checksums
Confidentiality	•Eavesdropping on the net •Theft of info from server •Theft of data from client •Info about network configuration •Info about which client talks to server	•Loss of information •Loss of privacy	Encryption, Web proxies
Denial of Service	•Killing of user threads •Flooding machine with bogus requests •Filling up disk or memory •Isolating machine by DNS attacks	•Disruptive •Annoying •Prevent user from getting work done	Difficult to prevent
Authentication	 Impersonation of legitimate users Data forgery 	 Misrepresentation of user Belief that false information is valid 	Cryptographic techniques

CSS322 Transport Security

Security Options in TCP/IP

- IPsec: Security for IP datagrams; general solution for all Internet traffic; implemented in OS
- SSL/TLS: Security for TCP segments; general solution for all TCP-based applications; implemented in libraries/applications (e.g. OpenSSL)
- Application-specific: Security for application messages; specific to each applications; implemented in single application

Transport Security

Web Security

TLS/SSL HTTPS SSH

Contents

Web Security Issues

TLS/SSL

HTTPS

Secure Shell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transport Security

Web Security

SSH

SSL and TLS

 Secure Sockets Layer (SSL) originated in Netscape web browser

- Transport Layer Security (TLS) standardised by IETF
- SSLv3 and TLS are almost the same
- SSL provides security services to application layer protocols using TCP
- SSL architecture consists of multiple protocols

SSL Architecture

Transport Security

Web Security

TLS/SSL

....

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР
SSL Record Protocol			
ТСР			
IP			

Record: provides confidentiality and message integrity

Handshake: authenticate entities, negotiate parameter values

Change Cipher: change cipher for use in connection Alert: alert peer entity of status/warning/error

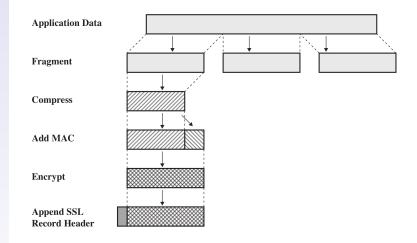
Transport Security

Web Security

TLS/SSL HTTPS

SSH

Connections and Sessions


- SSL connection corresponds with TCP connection
 - Client and server may have multiple connections
- SSL session is association between client and server
 - Session created with Handshake protocol
 - Multiple connections can be associated with one session
 - Security parameters for session can be shared for connections
- State information is stored after Handshake protocol
 - Session: ID, certificate, compression, cipher spec, master secret, ...
 - Connection: random values, encrypt keys, MAC secrets, IV, sequence numbers, ...

Transport Security

Web Security

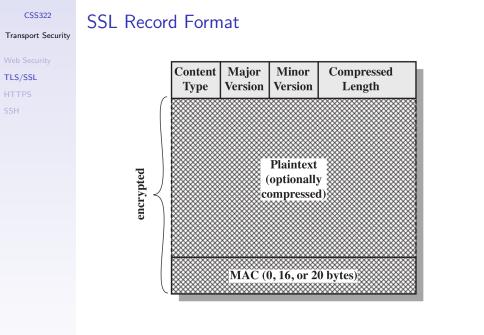
SSH

SSL Record Protocol Operation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transport Security

Web Security


TLS/SSL HTTPS

SSH

SSL Record Protocol

- Fragmentation: maximum fragment size is 16384 Bytes
- Compression: lossless; algorithm chosen in Handshake
- MAC: HMAC applied on compressed data; MAC secret key for connection used; MAc appended to compressed fragment
- Encrypt: applied to compressed fragment and MAC; algorithm chosen in Handshake
- SSL record header:
 - Content type: higher layer protocol (change cipher spec, alert, handshake, application)

- Version
- Compressed length in bytes

CSS322 Transport Security

TLS/SSL

SSL Record Protocol Payload

1 byte	1 byte	-	≥ 0 bytes
1	Туре	Length	Content
(a) Change Cipher Spec Protocol		(c) Hand	ishake Protocol
1 byte 1 byte		≥ 1 byt	e
Level Alert		OpaqueCo	ntent

(b) Alert Protocol

(d) Other Upper-Layer Protocol (e.g., HTTP)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transport Security

Web Security

TLS/SSL HTTPS

SSH

SSL Handshake Protocol

- Allow client and server to authenticate each other
- Negotiate encryption and MAC algorithms, exchange keys
 - Key Exchange: RSA, Diffie-Hellman
 - MAC: HMAC using SHA or MD5
 - Encryption: RC4, RC2, DES, 3DES, IDEA, AES
- Multiple phases:
 - 1. Establish security capabilities: client proposes algorithms, server selects one

- 2. Server authentication and key exchange
- 3. Client authentication and key exchange
- 4. Finish setting up connection

Transport Security

Web Security

TLS/SSL HTTPS SSH

SSL Handshake Protocol Messages


Message Type	Parameters
hello_request	null
client_hello	version, random, session id, cipher suite, compression method
server_hello	version, random, session id, cipher suite, compression method
certificate	chain of X.509v3 certificates
server_key_exchange	parameters, signature
certificate_request	type, authorities
server_done	null
certificate_verify	signature
client_key_exchange	parameters, signature
finished	hash value

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

SSL Handshake Protocol Operation

Transport Security

Web Security TLS/SSL HTTPS

Transport Security

Web Security TLS/SSL HTTPS

Contents

Web Security Issues

TLS/SSL

HTTPS

Secure Shell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transport Security

Web Security TLS/SSL HTTPS

HTTPS

- ► HTTPS: HTTP over SSL (or TLS)
- URL uses https://
- Web server listens on port 443
- Encrypt: URL of requested document, contents of document, contents of browser forms, cookies, contents of HTTP header
- Server is authenticated using certificate (using SSL)
- Client is authenticated using password (using HTTP)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Transport Security

Web Security TLS/SSL HTTPS SSH

Contents

Web Security Issues

TLS/SSL

HTTPS

Secure Shell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transport Security

Web Security TLS/SSL HTTPS SSH

Secure Shell

- ► TELNET provides a remote login facility; insecure
- Secure Shell (SSH) designed for secure remote login
- SSH also supports secure file transfer and tunnelling

- SSHv2 developed by IETF
- SSH architecture consists of 3 protocols

SSH Protocol Stack

Transport Security

Web Security

SSH

SSH User SSH Authentication Protocol **Connection Protocol** Multiplexes the encrypted Authenticates the client-side tunnel into several logical user to the server. channels. **SSH Transport Layer Protocol** Provides server authentication, confidentiality, and integrity. It may optionally also provide compression. TCP Transmission control protocol provides reliable, connectionoriented end-to-end delivery. IP Internet protocol provides datagram delivery across multiple networks.

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

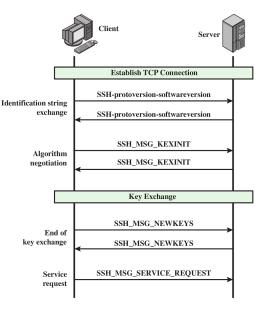
Transport Security

Web Security TLS/SSL HTTPS SSH

SSH Authentication

Server Authentication

- Server has public/private key pair
- Assume client knows server's public key
- During key exchange, server signs message with public key


Client Authentication

- Key-based: client has public/private key pair; server knows client public key
- Password-based: client sends password (encrypted); server knows password

CSS322 Transport Security

SSH Transport Layer Packet Exchange

Transport Security

Web Security TLS/SSL HTTPS SSH

SSH Transport Layer Protocol

- Identification string exchange: each entity identifies protocol and software version
- Algorithm negotiation: client and server send list of supported algorithms, in order of preference; first common algorithm chosen
- Key exchange: Diffie-Hellman
- End of key exchange: new keys generated from shared secret, e.g.

$$K_{c2s} = Hash(K||H||'C'||session_id)$$

where

 $H = Hash(ID_C||ID_C||M_C||M_S||PU_S||Y_A||Y_B||K)$

 Service request for User Authentication or Connection Protocol

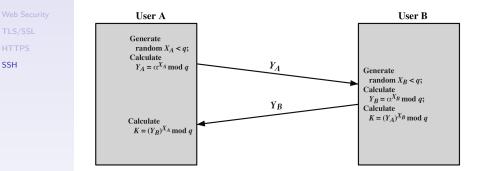
Transport Security

Web Security TLS/SSL HTTPS SSH

Cipher		
3des-cbc*	Three-key 3DES in CBC mode	
blowfish-cbc	Blowfish in CBC mode	
twofish256-cbc	Twofish in CBC mode with a 256-bit key	
twofish192-cbc	Twofish with a 192-bit key	
twofish128-cbc	Twofish with a 128-bit key	
aes256-cbc	AES in CBC mode with a 256-bit key	
aes192-cbc	AES with a 192-bit key	
aes128-cbc**	AES with a 128-bit key	
Serpent256-cbc	Serpent in CBC mode with a 256-bit key	
Serpent192-cbc	Serpent with a 192-bit key	
Serpent128-cbc	Serpent with a 128-bit key	
arcfour	RC4 with a 128-bit key	
cast128-cbc	CAST-128 in CBC	

SSH Algorithms

MAC algorithm	
hmac-sha1*	HMAC-SHA1; digest length = key length = 20
hmac-sha1-96**	First 96 bits of HMAC- SHA1; digest length = 12; key length = 20
hmac-md5	HMAC-SHA1; digest length = key length = 16
hmac-md5-96	First 96 bits of HMAC- SHA1; digest length = 12; key length = 16


Compression algorithm	
none*	No compression
zlib	Defined in RFC 1950 and RFC 1951

* = Required

** = Recommended

CSS322 Transport Security

Key Exchange with Diffie-Hellman

Transport Security

Web Security TLS/SSL HTTPS SSH

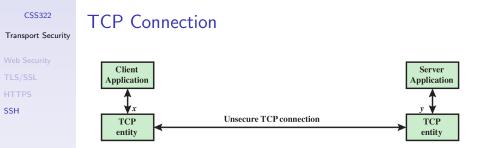
SSH Key Exchange with Diffie-Hellman

- SSH notation: q = P, $\alpha = G$, $Y_A = e$, $Y_B = f$
- ID string for client and server: ID_C, ID_S;
 SSH_MSG_KEXINIT message from client and server: M_C, M_S
- Server key pair: (PU_S, PR_S); assume client knows/trusts PU_S
- Client and server have agreed upon hash and encryption algorithms

Transport Security

Web Security TLS/SSL HTTPS SSH

SSH Key Exchange with Diffie-Hellman

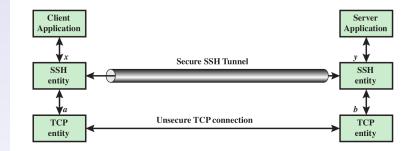

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(see Wireshark capture)

CSS322 SSH Transport Layer Packet Formation Transport Security payload SSH COMPRESS compressed payload pktl pdl padding seq # ENCRYPT MAC ciphertext

SSH Packet

≧ _ _ _ へ (~


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

a and b are application port numbers

CSS322 Transport Security

SSH

SSH Tunnel over TCP Connection

x and y are application port numbers, a and b are port numbers used by SSH

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Transport Security

Web Security TLS/SSL HTTPS SSH

SSH Tunnels

- Allow normal (unsecured) applications to securely transfer data
- Bypass firewalls by using different ports
- Local forwarding: traffic to local port is sent via SSH client to remote port
- Remote forwarding: traffic to remote port is sent via SSH server to local port

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()