The following notation is taken from the course textbook [1].

Symbol	Expression	Meaning
D, K	D(K,Y)	Symmetric decryption of ciphertext Y
,		using secret key K
D, PR_a	$D(PR_a, Y)$	Asymmetric decryption of ciphertext Y
,	(using A's private key PR_a
D, PU_a	$D(PU_a, Y)$	Asymmetric decryption of ciphertext Y
,		using A's public key PU_a
E, K	$\mathrm{E}(K,X)$	Symmetric encryption of plaintext X
		using secret key K
E, PR_a	$E(PR_a, X)$	Asymmetric encryption of plaintext X
		using A's private key PR_a
E, PU_a	$E(PU_a, X)$	Asymmetric encryption of plaintext X
		using A's public key PU_a
K		Secret key
PR_a		Private key of user A
PU_a		Public key of user A
MAC, K	MAC(K, X)	Message authentication code of message X
		using secret key K
GF(p)		The finite field of order p , where p is prime.
		The field is defined as the set Z_p together
		with the arithmetic operations modulo p .
$GF(2^n)$		The finite field of order 2^n
Z_n		Set of nonnegative integers less than n
gcd	$\gcd(i,j)$	Greatest common divisor; the largest
		positive integer that divides both i and j
		with no remainder on division.
mod	$a \mod m$	Remainder after division of a by m
\mod, \equiv	$a \equiv b \pmod{m}$	$a \mod m = b \mod m$
$\mod, \not\equiv$	$a \not\equiv b \pmod{m}$	$a \mod m \neq b \mod m$
dlog	$dlog_{a,p}(b)$	Discrete logarithm of the number b for the
		base $a \pmod{p}$
φ	$\phi(n)$	The number of positive integers less than n
		and relatively prime to n . This is Euler's
		totient function.
Σ	$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \dots + a_n$
П	$\prod_{i=1}^{n} a_i$	$a_1 \times a_2 \times \cdots \times a_n$
	i j	i divides j , which means that there is
		no remainder when j is divided by i
,		Absolute value of a
	x y	x concatenated with y
\approx	$x \approx y$	x is approximately equal to y
[[,]		The largest integer less than or equal to x
\in	$x \in \mathbf{S}$	The element x is contained in the set S

3DES	Triple DES; symmetric block cipher		
AES	Advanced Encryption Standard; symmetric block cipher		
CBC	Cipher Block Chaining mode of operation		
CFB	Cipher Feedback mode of operation		
CTR	Counter mode of operation		
DES	Data Encryption Standard; symmetric clock cipher		
ECB	Electronic Code Book mode of operation		
FIPS	Federal Information Processing Standard		
\gcd	greatest common divisor		
HTTPS	HTTP Security extensions		
IP	Internet Protocol; network layer		
IPsec	IP Security protocol; network layer		
LAN	Local Area Network		
MAC	Message Authentication Code		
OFB	Output Feedback mode of operation		
OSI	Open Systems Interconnection architecture		
PGP	Pretty Good Privacy		
PRF	Pseudo Random Function		
PRNG	Pseudo Random Number Generator		
RC4	stream cipher		
RSA	Rivest-Shamir-Adleman algorithm		
SHA	Secure Hash Algorithm		
SSL	Secure Sockets Layer; transport layer		
TRNG	True Random Number Generator		
XOR	Exclusive OR		

References

[1] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice Hall, fifth edition, 2011.