Hash Functions

Applications Example Requirement

Cryptographic Hash Functions

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 10 January 2011 CSS322Y10S2L09, Steve/Courses/CSS322/Lectures/hash.tex, r1613

Hash Functions

Applications

Example

Requirements

MD5 and SHA

Contents

Applications of Cryptographic Hash Functions

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

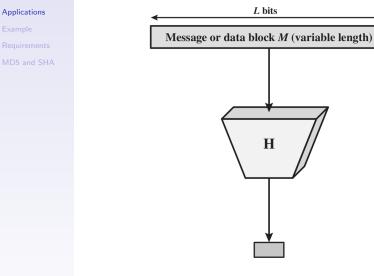
Simple Hash Function

Requirements and Security

MD5 and SHA

Hash Functions

- Applications
- Example
- Requirements
- MD5 and SHA


Hash Functions

- ► Hash function H: variable-length block of data M input; fixed-size hash value h = H(M) output
- Applying H to large set of inputs should produce evenly distributed and random looking outputs
- Cryptograhpic hash function: computationally infeasible to find:
 - 1. M that maps to known h (one-way property)
 - 2. M_1 and M_2 that produce same h (collision-free property)

- Used to determine whether or not data has changed
- Examples: message authentication, digitial signatures, one-way password file, intrusion/virus detection, PRNG

CSS322 Hash Functions

Cryptographic Hash Function

Hash value *h* (fixed length)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hash Functions

Applications

- Example
- Requirements
- MD5 and SHA

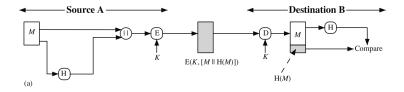
Message Authentication

- Verify the integrity of a message
 - Ensure data received are exactly as sent
 - Assure identity of the sender is valid
- Hash function used to provide message authentication called message digest

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hash Functions

Applications


Example

Requirements

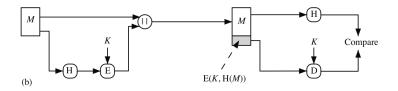
MD5 and SHA

Message Authentication Example (a)

 Encrypt the message and hash code using symmetric encryption

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Hash Functions


Applications

Example

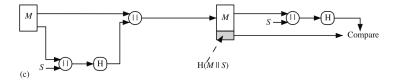
- Requirements
- MD5 and SHA

Message Authentication Example (b)

- Encrypt only hash code
- Reduces computation overhead when confidentiality not required

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Hash Functions


Applications

Example

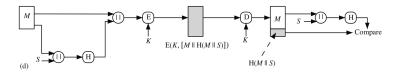
- Requirements
- MD5 and SHA

Message Authentication Example (c)

- Shared secret S is hashed
- No encryption needed

Hash Functions

Applications


Example

Requirements

MD5 and SHA

Message Authentication Example (d)

Shared secret combined with confidentiality

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Hash Functions

Applications

- Example
- Requirements
- MD5 and SHA

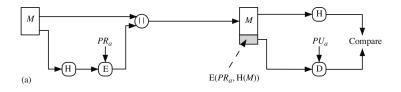
Authentication and Encryption

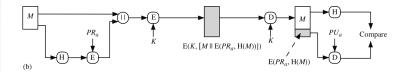
- Sometimes desirable to avoid encryption when performing authentication
 - Encryption in software can be slow
 - Encryption in hardware has financial costs
 - Encryption hardware can be inefficient for small amounts of data
 - Encryption algorithms may be patented, increasing costs to use

Message Authentication Codes (or keyed hash function)

- ► Take secret key K and message M as input; produce hash (or MAC) as output
- Combining hash function and encryption produces same result as MAC; but MAC algorithms can be more efficient than encryption algorithms

MAC covered in next topic


Hash Functions


Applications

- Example
- Requirements
- MD5 and SHA

Digital Signatures

- ► Hash value of message encrypted with user's private key
- Anyone with corresponding public key can verify integrity of message and author

(日)、

э

Hash Functions

Applications

Example Requirements MD5 and SHA Contents

Applications of Cryptographic Hash Functions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Simple Hash Function

Requirements and Security

MD5 and SHA

Hash Functions

Applications

Example

- Requirements
- MD5 and SHA

Bit-by-Bit Exclusive OR

$$C_i = b_{i1} \oplus b_{i2} \oplus \ldots \oplus b_{im}$$

- C_i is *i*th bit of hash code, $1 \le i \le n$
- *m* is number of *n*-bit blocks in input
- *b_{ij}* is *i*th bit in *j*th block
- Probability data error result in unchanged hash value: 2^{-n}

With structured data, effectiveness decreases

Hash Functions

Applications Example

Requirements

MD5 and SHA

Contents

Applications of Cryptographic Hash Functions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Simple Hash Function

Requirements and Security

MD5 and SHA

Hash Functions

Applications

Example

Requirements

MD5 and SHA

Preimages and Collisions

- For hash value h = H(x), x is preimage of h
- ▶ H is a many-to-one mapping; *h* has multiple preimages
- Collision occurs if $x \neq y$ and H(x) = H(y)
- Collisions are undesirable
- How many preimages for given hash value?
 - ▶ If H takes *b*-bit input block, 2^{*b*} possible messages
 - For *n*-bit hash code, where b > n, 2ⁿ possible hash codes
 - On average, if uniformly distributed hash values, then each hash value has 2^{b/n} preimages

Hash Functions

Applications Example Requirements

Requirements of Cryptographic Hash Function Variable input size: H can be applied to input block of any size

Fixed output size: H produces fixed length output

Efficiency: H(x) relatively easy to computer (practical implementations)

Preimage resistant: For any given h, computationally infeasible to find y such that H(y) = h(one-way property)

Second preimage resistant: For any given x, computationally infeasible to find $y \neq x$ with H(y) = H(x)(weak collision resistant)

Collision resistant: Computationally infeasible to find any pair (x, y) such that H(x) = H(y)(strong collision resistant)

Pseudorandomness: Output of H meets standard tests for pseudorandomness

Hash Functions

Applications

Example

Requirements

MD5 and SHA

Required Hash Properties for Different Applications

Weak hash function: Satisfies first 5 requirements (but not collision resistant)

Strong hash function: Also collision resistant

	Preimage Resistant	Second Preimage Resistant	Collision Resistant
Hash + digital signature	yes	yes	yes*
Intrusion detection and virus detection		yes	
Hash + symmetric encryption			
One-way password file	yes		
MAC	yes	yes	yes*

* Resistance required if attacker is able to mount a chosen message attack

Hash Functions

Applications

Example

Requirements

MD5 and SHA

Brute Attacks on Hash Functions

Preimage and Second Preimage Attack

- ► Find a *y* that gives specific *h*; try all possible values of *y*
- With *m*-bit hash code, effort required proportional to 2^m

Collision Resistant Brute Attack

- Find any two messages that have same hash values
- Effort required is proportinal to 2^{m/2}
- Due to birthday paradox, easier than preimage attacks

Practical Effort

- Crytpanalysis attacks possible in theory; complex
- Collision resistance desirable for general hash algorithms
- ▶ MD5 uses 128-bits: collision attacks possible (2⁶⁰)
- ► SHA uses longer codes; collison attacks infeasible

Hash Functions

Applications Example Requirements

MD5 and SHA

Contents

Applications of Cryptographic Hash Functions

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Simple Hash Function

Requirements and Security

MD5 and SHA

Hash Functions

MD5

- Applications
- Example
- Requirements
- MD5 and SHA

- Message Digest algorithm 5, developed by Ron Rivest in 1991
- Standardised by IETF in RFC 1321
- Generates 128-bit hash
- Was commonly used by applications, passwords, file integrity; no longer recommended
- Collision and other attacks possible; tools publicly available to attack MD5

Hash Functions

SHA

- Applications
- Example
- Requirements
- MD5 and SHA

- Secure Hash Algorithm, developed by NIST
- Standardised by NIST in FIPS 180 in 1993
- Improvements over time: SHA-0, SHA-1, SHA-2, SHA-3
- SHA-1 (and SHA-0) are considered insecure; no longer recommended
- SHA-3 in development, competition run by NIST

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ¹²⁸	< 2 ¹²⁸
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ