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Divisibility

I b divides a if a = mb for some m, where a, b and m are
integers

I b|a
I b is a divisor of a

I gcd(a, b): greatest common divisor of a and b
I Euclidean algorithm can find gcd

I Two integers, a and b, are relatively prime if
gcd(a, b) = 1
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Prime Numbers

I An integer p > 1 is a prime number if and only if its
only divisors are ±1 and ±p

I Any integer a > 1 can be factored as:

a = pa12 × pa22 × · · · × patt

where p1 < p2 < . . . < pt are prime numbers and where
each ai is a positive integer
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Modular Arithmetic

I If a is an integer and n is a positive integer, we define
a mod n to be the remainder when a is divided by n

I n is called the modulus

I Two integers a and b are congruent modulo n if
(a mod n) = (b mod n), which is written as

a ≡ b (mod n)

I (mod n) operator maps all integers into the set of
integers Zn = {0, 1, . . . , (n − 1)}

I Modular arithmetic performs arithmetic operations
within confines of set Zn
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Properties of Modular Arithmetic

I Rules of ordinary arithmetic involving addition,
subtraction, and multiplication also apply in modular
arithmetic

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n)− (b mod n)] mod n = (a− b) mod n

[(a mod n)× (b mod n)] mod n = (a× b) mod n
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Division in Modular Arithmetic

I a is additive inverse of b if a + b ≡ 0 (mod n)
I All integers have an additive inverse

I a is multiplicative inverse of b if a× b ≡ 1 (mod n)
I Not all integers have a multiplicative inverse
I a has a multiplicative inverse in (mod n) if a is

relatively prime to n

I Division: a÷ b ≡ a×MultInverse(b) (mod n)
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Fermat’s Theorem

I Fermat’s Theorem (1): if p is prime and a is a positive
integer not divisible by p, then

ap−1 ≡ 1 (mod p)

I Fermat’s Theorem (2): if p is prime and a is a positive
integer, then

ap ≡ a (mod p)
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Euler’s Theorem

I Euler’s Totient Function, φ(n): the number of positive
integers less than n and relatively prime to n

I φ(1) = 1
I For prime p, φ(p) = p − 1
I For primes p and q, and n = pq,
φ(n) = (p − 1)× (q − 1)

I Euler’s Theorem (1): For every a and n that are
relatively prime:

aφ(n) ≡ 1 (mod n)

I Euler’s Theorem (2): For positive integers a and n:

aφ(n)+1 ≡ a (mod n)
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Logarithms in Modular Arithmetic

I Exponentiation (mod n): repeated multiplication

I Logarithms in ordinary arithmetic:

b = ai

i = loga(b)

I Logarithms in modular arithmetic (discrete logarithm):

b = ai (mod p)

i = dloga,p(b)

I A unique exponent i can be found if a is a primitive
root of prime p

I If a is a primitive root of p then a, a2, a3, . . . , ap−1 are
distinct (modp)

I Only integers with primitive roots: 2, 4, pα, 2pα where
p is any odd prime and alpha is positive integer
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Powers of Integers, Modulo 19



CSS322

Number Theory

Primes

Modular
Arithmetic

Discrete Logarithms, Modulo 19



CSS322

Number Theory

Primes

Modular
Arithmetic

Complexity

Certain problems are computationally hard . . .

Integer Factorization

I If p and q are unknown primes, given n = pq, find p
and q

I Largest RSA number factored into two primes is 768
bits (232 decimal digits)

Euler’s Totient

I Given composite n, find φ(n)

I Harder than integer factorization

Discrete Logarithms

I Given b, a and p, find i such that i = dloga,p(b)

I Comparable to integer factorization
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